| 
 SIGMA 8 (2012), 064, 45 pages       arXiv:1204.2746      
https://doi.org/10.3842/SIGMA.2012.064 
Classification of Non-Affine Non-Hecke Dynamical R-Matrices
Jean Avan a, Baptiste Billaud b and Geneviève Rollet a
 a) Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise (CNRS UMR 8089), Saint-Martin 2,
2, av. Adolphe Chauvin, F-95302 Cergy-Pontoise Cedex, France
 b) Laboratoire de Mathématiques ''Analyse, Géometrie Modélisation'', Université de Cergy-Pontoise (CNRS UMR 8088), Saint-Martin 2,
2, av. Adolphe Chauvin, F-95302 Cergy-Pontoise Cedex, France
 
 
Received April 24, 2012, in final form September 19, 2012; Published online September 28, 2012 
Abstract
 
A complete classification of non-affine dynamical quantum $R$-matrices obeying the ${\mathcal G}l_n({\mathbb C})$-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition. Each solution is in particular characterized by an arbitrary partition $\{{\mathbb I}(i),\; i\in\{1,\dots,n\}\}$ of the set of indices $\{1,\dots,n\}$ into classes, ${\mathbb I}(i)$ being the class of the index $i$, and an arbitrary family of signs $(\epsilon_{\mathbb I})_{{\mathbb I}\in\{{\mathbb I}(i), \; i\in\{1,\dots,n\}\}}$ on this partition. The weak Hecke-type $R$-matrices exhibit the analytical behaviour
$R_{ij,ji}=f(\epsilon_{{\mathbb I}(i)}\Lambda_{{\mathbb I}(i)}-\epsilon_{{\mathbb I}(j)}\Lambda_{{\mathbb I}(j)})$,
where $f$ is a particular trigonometric or rational function, $\Lambda_{{\mathbb I}(i)}=\sum\limits_{j\in{\mathbb I}(i)}\lambda_j$, and $(\lambda_i)_{i\in\{1,\dots,n\}}$ denotes the family of dynamical coordinates.
  
 Key words:
quantum integrable systems; dynamical Yang-Baxter equation; (weak) Hecke algebras 
pdf (780 kb)  
tex (50 kb)
 
 
References
 
- Avan J., Babelon O., Billey E., The Gervais-Neveu-Felder equation and
  the quantum Calogero-Moser systems, Comm. Math. Phys.
  178 (1996), 281-299, hep-th/9505091.
 
- Avan J., Kulish P.P., Rollet G., Reflection $K$-matrices related to
  Temperley-Lieb $R$-matrices, Theoret. and Math. Phys. 169
  (2011), 1530-1538, arXiv:1012.3012.
 
- Avan J., Ragoucy E., Rational Calogero-Moser model: explicit forms and
  $r$-matrix structure of the second Poisson structure, arXiv:1207.5368.
 
- Avan J., Talon M., Classical $R$-matrix structure for the Calogero model,
  Phys. Lett. B 303 (1993), 33-37, hep-th/9210128.
 
- Balog J., Dabrowski L., Fehér L., Classical $r$-matrix and exchange
  algebra in WZNW and Toda theories, Phys. Lett. B 244
  (1990), 227-234.
 
- Balog J., Fehér L., Palla L., Chiral extensions of the WZNW phase space,
  Poisson-Lie symmetries and groupoids, Nuclear Phys. B
  568 (2000), 503-542, hep-th/9910046.
 
- Bernard D., On the Wess-Zumino-Witten models on Riemann surfaces,
  Nuclear Phys. B 309 (1988), 145-174.
 
- Bernard D., On the Wess-Zumino-Witten models on the torus,
  Nuclear Phys. B 303 (1988), 77-93.
 
- Calogero F., Solution of a three-body problem in one dimension,
  J. Math. Phys. 10 (1969), 2191-2196.
 
- Donin J., Mudrov A., Dynamical Yang-Baxter equation and quantum vector
  bundles, Comm. Math. Phys. 254 (2005), 719-760,
  math.QA/0306028.
 
- Enriquez B., Etingof P., Quantization of classical dynamical $r$-matrices with
  nonabelian base, math.QA/0311224.
 
- Etingof P., On the dynamical Yang-Baxter equation, in Proceedings of the
  International Congress of Mathematicians, Vol. II (Beijing,
  2002), Higher Ed. Press, Beijing, 2002, 555-570, math.QA/0207008.
 
- Etingof P., Schiffmann O., Lectures on the dynamical Yang-Baxter
  equations, in Quantum Groups and Lie Theory (Durham, 1999),
  London Math. Soc. Lecture Note Ser., Vol. 290, Cambridge Univ.
  Press, Cambridge, 2001, 89-129, math.QA/9908064.
 
- Etingof P., Varchenko A., Solutions of the quantum dynamical Yang-Baxter
  equation and dynamical quantum groups, Comm. Math. Phys.
  196 (1998), 591-640, math.QA/9801135.
 
- Felder G., Conformal field theory and integrable systems associated to elliptic
  curves, in Proceedings of the International Congress of Mathematicians,
  Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1247-1255,
  hep-th/9407154.
 
- Felder G., Elliptic quantum groups, in XIth International Congress of
  Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995,
  211-218, hep-th/9412207.
 
- Furlan P., Hadjiivanov L.K., Isaev A.P., Ogievetsky O.V., Pyatov P.N., Todorov
  I.T., Quantum matrix algebra for the ${\rm SU}(n)$ WZNW model,
  J. Phys. A: Math. Gen. 36 (2003), 5497-5530,
  hep-th/0003210.
 
- Gervais J.L., Neveu A., Novel triangle relation and absence of tachyons in
  Liouville string field theory, Nuclear Phys. B 238
  (1984), 125-141.
 
- Hadjiivanov L.K., Stanev Y.S., Todorov I.T., Regular basis and $R$-matrices
  for the $\widehat{\rm su}(n)_k$ Knizhnik-Zamolodchikov equation,
  Lett. Math. Phys. 54 (2000), 137-155,
  hep-th/0007187.
 
- Isaev A.P., Twisted Yang-Baxter equations for linear quantum
  (super)groups, J. Phys. A: Math. Gen. 29 (1996),
  6903-6910, q-alg/95110006.
 
- Ju G., Luo X., Wang S., Wu K., A free-fermion type solution of quantum
  dynamical Yang-Baxter equation, Commun. Theor. Phys.
  32 (1999), 557-562.
 
- Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino model
  in two dimensions, Nuclear Phys. B 247 (1984), 83-103.
 
- Moser J., Three integrable Hamiltonian systems connected with isospectral
  deformations, Adv. Math. 16 (1975), 197-220.
 
- Ruijsenaars S.N.M., Schneider H., A new class of integrable systems and its
  relation to solitons, Ann. Physics 170 (1986), 370-405.
 
- Xu P., Quantum dynamical Yang-Baxter equation over a nonabelian base,
  Comm. Math. Phys. 226 (2002), 475-495,
  math.QA/0104071.
 
 
 | 
 |