Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 065, 20 pages      arXiv:1206.6004      https://doi.org/10.3842/SIGMA.2012.065
Contribution to the Special Issue “Geometrical Methods in Mathematical Physics”

Bring's Curve: its Period Matrix and the Vector of Riemann Constants

Harry W. Braden and Timothy P. Northover
School of Mathematics, Edinburgh University, Edinburgh, Scotland, UK

Received June 10, 2012, in final form September 27, 2012; Published online October 02, 2012

Abstract
Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S5. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan. In particular we recover their period matrix; further, the vector of Riemann constants will be identified.

Key words: Bring's curve; vector of Riemann constants.

pdf (526 kb)   tex (64 kb)

References

  1. Berndt B.C., Ramanujan's notebooks. Part III, Springer-Verlag, New York, 1991.
  2. Braden H.W., Northover T.P., Klein's curve, J. Phys. A: Math. Theor. 43 (2010), 434009, 17 pages, arXiv:0905.4202.
  3. Breuer T., Characters and automorphism groups of compact Riemann surfaces, London Mathematical Society Lecture Note Series, Vol. 280, Cambridge University Press, Cambridge, 2000.
  4. Bujalance E., Etayo J.J., Gamboa J.M., Gromadzki G., Automorphism groups of compact bordered Klein surfaces. A combinatorial approach, Lecture Notes in Mathematics, Vol. 1439, Springer-Verlag, Berlin, 1990.
  5. Craig M., A sextic Diophantine equation, Austral. Math. Soc. Gaz. 29 (2002), 27-29.
  6. Craig M., On Klein's quartic curve, Austral. Math. Soc. Gaz. 31 (2004), 115-120.
  7. Deconinck B., van Hoeij M., Computing Riemann matrices of algebraic curves, Phys. D 152/153 (2001), 28-46.
  8. Dye R.H., A plane sextic curve of genus 4 with A5 for collineation group, J. London Math. Soc. 52 (1995), 97-110.
  9. Edge W.L., Bring's curve, J. London Math. Soc. 18 (1978), 539-545.
  10. Edge W.L., Tritangent planes of Bring's curve, J. London Math. Soc. 23 (1981), 215-222.
  11. Farkas H.M., Kra I., Riemann surfaces, Graduate Texts in Mathematics, Vol. 71, Springer-Verlag, New York, 1980.
  12. Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin, 1973.
  13. Hulek K., Geometry of the Horrocks-Mumford bundle, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., Vol. 46, Amer. Math. Soc., Providence, RI, 1987, 69-85.
  14. Kallel S., Sjerve D., Invariant spin structures on Riemann surfaces, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 457-477, math.GT/0610568.
  15. Northover T.P., Riemann surfaces with symmetry: algorithms and applications, Ph.D. thesis, Edinburgh University, 2011.
  16. Rauch H.E., Lewittes J., The Riemann surface of Klein with 168 automorphisms, in Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 1970, 297-308.
  17. Riera G., Rodríguez R.E., The period matrix of Bring's curve, Pacific J. Math. 154 (1992), 179-200.
  18. Vinnikov V., Selfadjoint determinantal representations of real plane curves, Math. Ann. 296 (1993), 453-479.
  19. Weber M., Kepler's small stellated dodecahedron as a Riemann surface, Pacific J. Math. 220 (2005), 167-182.


Previous article  Next article   Contents of Volume 8 (2012)