| 
 SIGMA 8 (2012), 080, 19 pages      arXiv:1208.6165     
https://doi.org/10.3842/SIGMA.2012.080 
Novel Enlarged Shape Invariance Property and Exactly Solvable Rational Extensions of the Rosen-Morse II and Eckart Potentials
Christiane Quesne
 Physique Nucléaire Théorique et Physique Mathématique,  Université Libre de
Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
 
 
Received August 30, 2012, in final form October 15, 2012; Published online October 26, 2012 
Abstract
 
The existence of a novel enlarged shape invariance property valid for some rational extensions of shape-invariant conventional potentials, first pointed out in the case of the Morse potential, is confirmed by deriving all rational extensions of the Rosen-Morse II and Eckart potentials that can be obtained in first-order supersymmetric quantum mechanics. Such extensions are shown to belong to three different types, the first two strictly isospectral to some starting conventional potential with different parameters and the third with an extra bound state below the spectrum of the latter. In the isospectral cases, the partner of the rational extensions resulting from the deletion of their ground state can be obtained by translating both the potential parameter A (as in the conventional case) and the degree m of the polynomial arising in the denominator. It therefore belongs to the same family of extensions, which turns out to be closed.
  
 Key words:
quantum mechanics; supersymmetry; shape invariance. 
pdf (385 kb)  
tex (24 kb)
 
 
References
 
- Adler V.É., On a modification of Crum's method, Theoret. and
  Math. Phys. 101 (1994), 1381-1386.
 
- Andrianov A.A., Ioffe M.V., Nishnianidze D.N., Polynomial SUSY in quantum
  mechanics and second derivative Darboux transformations, Phys.
  Lett. A 201 (1995), 103-110, hep-th/9404120.
 
- Aoyama H., Sato M., Tanaka T., N-fold supersymmetry in quantum
  mechanics: general formalism, Nuclear Phys. B 619 (2001),
  105-127, quant-ph/0106037.
 
- Bagchi B., Quesne C., Roychoudhury R., Isospectrality of conventional and new
  extended potentials, second-order supersymmetry and role of PT
  symmetry, Pramana J. Phys. 73 (2009), 337-347,
  arXiv:0812.1488.
 
- Bagrov V.G., Samsonov B.F., Darboux transformation, factorization, and
  supersymmetry in one-dimensional quantum mechanics, Theoret. and
  Math. Phys. 104 (1995), 1051-1060.
 
- Berger M.S., Ussembayev N.S., Isospectral potentials from modified
  factorization, Phys. Rev. A 82 (2010), 022121, 7 pages,
  arXiv:1008.1528.
 
- Bougie J., Gangopadhyaya A., Mallow J.V., Generation of a complete set of
  additive shape-invariant potentials from an Euler equation, Phys.
  Rev. Lett. 105 (2010), 210402, 4 pages, arXiv:1008.2035.
 
- Bougie J., Gangopadhyaya A., Mallow J.V., Method for generating additive
  shape-invariant potentials from an Euler equation, J. Phys. A:
  Math. Theor. 44 (2011), 275307, 19 pages, arXiv:1103.1169.
 
- Cariñena J.F., Perelomov A.M., Rañada M.F., Santander M., A quantum exactly
  solvable nonlinear oscillator related to the isotonic oscillator,
  J. Phys. A: Math. Theor. 41 (2008), 085301, 10 pages,
  arXiv:0711.4899.
 
- Cooper F., Khare A., Sukhatme U., Supersymmetry and quantum mechanics,
  Phys. Rep. 251 (1995), 267-385, hep-th/9405029.
 
- Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math.
  Oxford Ser. (2) 6 (1955), 121-127, physics/9908019.
 
- Dutta D., Roy P., Conditionally exactly solvable potentials and exceptional
  orthogonal polynomials, J. Math. Phys. 51 (2010), 042101,
  9 pages.
 
- Dutta D., Roy P., Generalized factorization and isospectral potentials,
  Phys. Rev. A 83 (2011), 054102, 4 pages.
 
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental
  functions, Mc-Graw Hill, New York, 1953.
 
- Fellows J.M., Smith R.A., Factorization solution of a family of quantum
  nonlinear oscillators, J. Phys. A: Math. Theor. 42 (2009),
  335303, 13 pages.
 
- Fernández C. D.J., Fernández-García N., Higher-order
  supersymmetric quantum mechanics, AIP Conf. Proc. 744
  (2005), 236-273, quant-ph/0502098.
 
- Gómez-Ullate D., Kamran N., Milson R., A conjecture on exceptional
  orthogonal polynomials, arXiv:1203.6857.
 
- Gómez-Ullate D., Kamran N., Milson R., An extended class of orthogonal
  polynomials defined by a Sturm-Liouville problem, J. Math. Anal.
  Appl. 359 (2009), 352-367, arXiv:0807.3939.
 
- Gómez-Ullate D., Kamran N., Milson R., An extension of Bochner's problem:
  exceptional invariant subspaces, J. Approx. Theory 162
  (2010), 987-1006, arXiv:0805.3376.
 
- Gómez-Ullate D., Kamran N., Milson R., Exceptional orthogonal polynomials
  and the Darboux transformation, J. Phys. A: Math. Theor.
  43 (2010), 434016, 16 pages, arXiv:1002.2666.
 
- Gómez-Ullate D., Kamran N., Milson R., On orthogonal polynomials spanning a
  non-standard flag, in Algebraic Aspects of Darboux Transformations, Quantum
  Integrable Systems and Supersymmetric Quantum Mechanics, Contemp.
  Math., Vol. 563, Amer. Math. Soc., Providence, RI, 2012, 51-72,
  arXiv:1101.5584.
 
- Gómez-Ullate D., Kamran N., Milson R., Supersymmetry and algebraic
  Darboux transformations, J. Phys. A: Math. Gen. 37
  (2004), 10065-10078, nlin.SI/0402052.
 
- Gómez-Ullate D., Kamran N., Milson R., The Darboux transformation and
  algebraic deformations of shape-invariant potentials, J. Phys. A:
  Math. Gen. 37 (2004), 1789-1804, quant-ph/0308062.
 
- Gómez-Ullate D., Kamran N., Milson R., Two-step Darboux transformations
  and exceptional Laguerre polynomials, J. Math. Anal. Appl.
  387 (2012), 410-418, arXiv:1103.5724.
 
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products,
  Academic Press, New York, 1980.
 
- Grandati Y., Multistep DBT and regular rational extensions of the isotonic
  oscillator,
  Ann. Physics 327 (2012), 2411-2431,
   arXiv:1108.4503.
 
- Grandati Y., New rational extensions of solvable potentials with finite bound
  state spectrum, arXiv:1203.4149.
 
- Grandati Y., Solvable rational extensions of the isotonic oscillator,
  Ann. Physics 326 (2011), 2074-2090, arXiv:1101.0055.
 
- Grandati Y., Solvable rational extensions of the Morse and
  Kepler-Coulomb potentials, J. Math. Phys. 52 (2011),
  103505, 12 pages, arXiv:1103.5023.
 
- Ho C.-L., Prepotential approach to solvable rational extensions of harmonic
  oscillator and Morse potentials, J. Math. Phys. 52
  (2011), 122107, 8 pages, arXiv:1105.3670.
 
- Ho C.-L., Prepotential approach to solvable rational potentials and exceptional
  orthogonal polynomials, Progr. Theoret. Phys. 126 (2011),
  185-201, arXiv:1104.3511.
 
- Ho C.-L., Odake S., Sasaki R., Properties of the exceptional (Xl)
  Laguerre and Jacobi polynomials, SIGMA 7 (2011), 107,
  24 pages, arXiv:0912.5447.
 
- Krein M.G., On a continual analogue of a Christoffel formula from the theory
  of orthogonal polynomials, Dokl. Acad. Nauk SSSR 113
  (1957), 970-973.
 
- Odake S., Sasaki R., Another set of infinitely many exceptional (Xl)
  Laguerre polynomials, Phys. Lett. B 684 (2010), 173-176,
  arXiv:0911.3442.
 
- Odake S., Sasaki R., Exactly solvable quantum mechanics and infinite families
  of multi-indexed orthogonal polynomials, Phys. Lett. B 702
  (2011), 164-170, arXiv:1105.0508.
 
- Odake S., Sasaki R., Infinitely many shape-invariant potentials and cubic
  identities of the Laguerre and Jacobi polynomials, J. Math.
  Phys. 51 (2010), 053513, 9 pages, arXiv:0911.1585.
 
- Odake S., Sasaki R., Infinitely many shape invariant potentials and new
  orthogonal polynomials, Phys. Lett. B 679 (2009), 414-417,
  arXiv:0906.0142.
 
- Quesne C., Exceptional orthogonal polynomials and new exactly solvable
  potentials in quantum mechanics, J. Phys. Conf. Ser. 380
  (2012), 012016, 13 pages, arXiv:1111.6467.
 
- Quesne C., Exceptional orthogonal polynomials, exactly solvable potentials and
  supersymmetry, J. Phys. A: Math. Theor. 41 (2008), 392001,
  6 pages, arXiv:0807.4087.
 
- Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional
  orthogonal polynomials, Modern Phys. Lett. A 26 (2011),
  1843-1852, arXiv:1106.1990.
 
- Quesne C., Rationally-extended radial oscillators and Laguerre exceptional
  orthogonal polynomials in kth-order SUSYQM, Internat. J. Modern
  Phys. A 26 (2011), 5337-5347, arXiv:1110.3958.
 
- Quesne C., Revisiting (quasi)-exactly solvable rational extensions of the Morse
  potential, Internat. J. Modern Phys. A 27 (2012), 1250073,
  18 pages, arXiv:1203.1812.
 
- Quesne C., Solvable rational potentials and exceptional orthogonal polynomials
  in supersymmetric quantum mechanics, SIGMA 5 (2009), 084,
  24 pages, arXiv:0906.2331.
 
- Ramos A., On the new translational shape-invariant potentials,
  J. Phys. A: Math. Theor. 44 (2011), 342001, 9 pages,
  arXiv:1106.3732.
 
- Sasaki R., Takemura K., Global solutions of certain second order differential
  equations with a high degree of apparent singularity, arXiv:1207.5302.
 
- Sasaki R., Tsujimoto S., Zhedanov A., Exceptional Laguerre and Jacobi
  polynomials and the corresponding potentials through Darboux-Crum
  transformations, J. Phys. A: Math. Theor. 43 (2010),
  315204, 20 pages, arXiv:1004.4711.
 
- Sukumar C.V., Supersymmetric quantum mechanics of one-dimensional systems,
  J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
 
- Szegö G., Orthogonal polynomials, Amer. Math. Soc., Providence, RI, 1939.
 
 
 | 
 |