|
SIGMA 8 (2012), 081, 18 pages arXiv:1206.3653
https://doi.org/10.3842/SIGMA.2012.081
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Chikashi Arita a and Kohei Motegi b
a) Institut de Physique Théorique CEA, F-91191 Gif-sur-Yvette, France
b) Okayama Institute for Quantum Physics, Kyoyama 1-9-1, Okayama 700-0015, Japan
Received July 06, 2012, in final form October 23, 2012; Published online October 27, 2012
Abstract
We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model
with quantum group symmetry in the periodic boundary condition. We exactly
calculate the finite size correction terms of the entanglement entropies from the double scaling limit.
We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find
the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy.
This behavior is similar to that of the entanglement
entropies.
Key words:
valence-bond-solid state; entanglement; quantum group.
pdf (662 kb)
tex (384 kb)
References
- Affleck I., Kennedy T., Lieb E.H., Tasaki H., Valence bond ground states in
isotropic quantum antiferromagnets, Comm. Math. Phys. 115
(1988), 477-528.
- Amico L., Fazio R., Osterloh A., Vedral V., Entanglement in many-body systems,
Rev. Modern Phys. 80 (2008), 517-576,
quant-ph/0703044.
- Arita C., Motegi K., Spin-spin correlation functions of the
q-valence-bond-solid state of an integer spin model, J. Math.
Phys. 52 (2011), 063303, 15 pages, arXiv:1009.4018.
- Arovas D.P., Auerbach A., Haldane F.D.M., Extended Heisenberg models of
antiferromagnetism: analogies to the fractional quantum Hall effect,
Phys. Rev. Lett. 60 (1988), 531-534.
- Batchelor M.T., Mezincescu L., Nepomechie R.I., Rittenberg V.,
q-deformations of the O(3) symmetric spin-1 Heisenberg
chain, J. Phys. A: Math. Gen. 23 (1990), L141-L144.
- Bennett C.H., DiVincenzo D.P., Quantum information and computation,
Nature 404 (2000), 247-255.
- Calabrese P., Cardy J., Entanglement entropy and quantum field theory,
J. Stat. Mech. Theory Exp. 2004 (2004), P06002, 27 pages,
hep-th/0405152.
- Drinfel'd V.G., Hopf algebras and the quantum Yang-Baxter equation,
Dokl. Akad. Nauk SSSR 32 (1985), 254-258.
- Fang H., Korepin V.E., Roychowdhury V., Entanglement in a valence-bond-solid
state, Phys. Rev. Lett. 93 (2004), 227203, 4 pages,
quant-ph/0406067.
- Fannes M., Nachtergaele B., Werner R.F., Exact antiferromagnetic ground-states
of quantum spin chains, Europhys. Lett. 10 (1989),
633-637.
- Freitag W.D., Müller-Hartmann E., Complete analysis of two spin
correlations of valence bond solid chains for all integer spins,
Z. Phys. B 83 (1991), 381-390.
- García-Ripoll J.J., Martín-Delgado M.A., Cirac J.I., Implementation of
spin Hamiltonians in optical lattices, Phys. Rev. Lett. 93
(2004), 250405, 4 pages, cond-mat/0404566.
- Haldane F.D.M., Continuum dynamics of the 1-D Heisenberg
antiferromagnet: identification with the O(3) nonlinear sigma
model, Phys. Lett. A 93 (1983), 464-468.
- Haldane F.D.M., Nonlinear field theory of large-spin Heisenberg
antiferromagnets: semiclassically quantized solitons of the one-dimensional
easy-axis Néel state, Phys. Rev. Lett. 50 (1983),
1153-1156.
- Jimbo M., A q-difference analogue of U(g) and the
Yang-Baxter equation, Lett. Math. Phys. 10 (1985),
63-69.
- Katsura H., Hirano T., Hatsugai Y., Exact analysis of entanglement in gapped
quantum spin chains, Phys. Rev. B 76 (2007), 012401,
4 pages, cond-mat/0702196.
- Katsura H., Hirano T., Korepin V.E., Entanglement in an SU(n)
valence-bond-solid state, J. Phys. A: Math. Theor. 41
(2008), 135304, 13 pages, arXiv:0711.3882.
- Katsura H., Kawashima N., Kirillov A.N., Korepin V.E., Tanaka S., Entanglement
in valence-bond-solid states on symmetric graphs, J. Phys. A: Math.
Theor. 43 (2010), 255303, 28 pages, arXiv:1003.2007.
- Klümper A., Schadschneider A., Zittartz J., Equivalence and solution of
anisotropic spin-1 models and generalized t-J fermion models in
one dimension, J. Phys. A: Math. Gen. 24 (1991),
L955-L959.
- Klümper A., Schadschneider A., Zittartz J., Groundstate properties of a
generalized VBS-model, Z. Phys. B 87 (1992), 281-287.
- Klümper A., Schadschneider A., Zittartz J., Matrix product ground states
for one-dimensional spin-1 quantum antiferromagnets, Europhys. Lett.
24 (1993), 293-297, cond-mat/9307028.
- Korepin V.E., Xu Y., Entanglement in valence-bond-solid states,
Internat. J. Modern Phys. B 24 (2010), 1361-1440,
arXiv:0908.2345.
- Lyoyd S., A potentially realizable quantum computer, Science
261 (1993), 1569-1571.
- Motegi K., The matrix product representation for the q-VBS state of
one-dimensional higher integer spin model, Phys. Lett. A
374 (2010), 3112-3115, arXiv:1003.0050.
- Orús R., Geometric entanglement in a one-dimensional valence bond solid
state, Phys. Rev. A 78 (2008), 062332, 4 pages,
arXiv:0808.0938.
- Orús R., Universal geometric entanglement close to quantum phase transitions,
Phys. Rev. Lett. 100 (2008), 130502, 4 pages,
arXiv:0711.2556.
- Orús R., Dusuel S., Vidal J., Equivalence of critical scaling laws for
many-body entanglement in the Lipkin-Meshkov-Glick model, Phys.
Rev. Lett. 101 (2008), 025701, 4 pages, arXiv:0803.3151.
- Orús R., Tu H.H., Entanglement and SU(n) symmetry in
one-dimensional valence-bond solid states, Phys. Rev. B 83
(2011), 201101(R), 4 pages, arXiv:1103.3994.
- Orús R., Wei T.C., Geometric entanglement of one-dimensional systems:
bounds and scalings in the thermodynamic limit, Quantum Inf. Comput.
11 (2011), 563-573, arXiv:1006.5584.
- Orús R., Wei T.C., Tu H.H., Phase diagram of the SO(n)
blinear-biquadratic chain from many-body entanglement, Phys. Rev. B
84 (2011), 064409, 7 pages, arXiv:1010.5029.
- Santos R.A., Korepin V.E., Entanglement of disjoint blocks in the
one-dimensional spin-1 VBS, J. Phys. A: Math. Theor. 45
(2012), 125307, 19 pages, arXiv:1110.3300.
- Santos R.A., Paraan F.N.C., Korepin V.E., Klümper A., Entanglement spectra
of q-deformed higher spin VBS states, J. Phys. A: Math. Theor.
45 (2012), 175303, 14 pages, arXiv:1201.5927.
- Santos R.A., Paraan F.N.C., Korepin V.E., Klümper A., Entanglement spectra
of the q-deformed Affleck-Kennedy-Lieb-Tasaki model and matrix product
states, Europhys. Lett. 98 (2012), 37005, 6 pages,
arXiv:1112.0517.
- Stéphan J.M., Misguich G., Alet F., Geometric entanglement and
Affleck-Ludwig boundary entropies in critical XXZ and Ising chains,
Phys. Rev. B 82 (2010), 180406(R), 4 pages,
arXiv:1007.4161.
- Totsuka K., Suzuki M., Hidden symmetry breaking in a generalized valence-bond
solid model, J. Phys. A: Math. Gen. 27 (1994), 6443-6456.
- Totsuka K., Suzuki M., Matrix formalism for the VBS-type models and hidden
order, J. Phys. Condens. Matter 7 (1995), 1639-1662.
- Verstraete F., Martín-Delgado M.A., Cirac J.I., Diverging entanglement
length in gapped quantum spin systems, Phys. Rev. Lett. 92
(2004), 087201, 4 pages, quant-ph/0311087.
- Wei T.C., Das D., Mukhopadyay S., Vishveshwara S., Goldbart P.M., Global
entanglement and quantum criticality in spin chains, Phys. Rev. A
71 (2005), 060305(R), 4 pages, quant-ph/0405162.
- Wei T.C., Vishveshwara S., Goldbart P.M., Global geometric entanglement in
transverse-field XY spin chains: finite and infinite systems,
Quantum Inf. Comput. 11 (2011), 326-354,
arXiv:1012.4114.
- Xu Y., Katsura H., Hirano T., Korepin V.E., Entanglement and density matrix of
a block of spins in AKLT model, J. Stat. Phys. 133
(2008), 347-377, arXiv:0802.3221.
- Zhang J., Wei T.C., Laflamme R., Experimental quantum simulation of
entanglement in many-body systems, Phys. Rev. Lett. 107
(2011), 010501, 4 pages, arXiv:1104.0275.
|
|