| 
 SIGMA 8 (2012), 088, 16 pages       arXiv:1210.5181      
https://doi.org/10.3842/SIGMA.2012.088 
Contribution to the Special Issue “Mirror Symmetry and Related Topics” 
Nekrasov's Partition Function and Refined Donaldson-Thomas Theory: the Rank One Case
Balázs Szendrői
 Mathematical Institute, University of Oxford, UK
 
 
Received June 12, 2012, in final form November 05, 2012; Published online November 17, 2012 
Abstract
 
This paper studies geometric engineering, in the simplest possible case of rank one
(Abelian) gauge theory on the affine plane and the resolved conifold. We recall the identification between
Nekrasov's partition function and a version of refined Donaldson-Thomas theory, and study the
relationship between the underlying vector spaces. Using a purity result, we identify the vector
space underlying refined Donaldson-Thomas theory on the conifold geometry as the exterior space of the space of
polynomial functions on the affine plane, with the (Lefschetz) SL(2)-action on the threefold side
being dual to the geometric SL(2)-action on the affine plane.
We suggest that the exterior space should be a module for the
(explicitly not yet known) cohomological Hall algebra (algebra of BPS states) of the conifold.
  
 Key words:
geometric engineering; Donaldson-Thomas theory; resolved conifold. 
pdf (451 kb)  
tex (48 kb)
 
 
References
 
- Behrend K., Donaldson-Thomas type invariants via microlocal geometry,
  Ann. of Math. (2) 170 (2009), 1307-1338,
  math.AG/0507523.
 
- Behrend K., Bryan J., Szendrői B., Motivic degree zero Donaldson-Thomas
  invariants, Invent. Math., to appear, arXiv:0909.5088.
 
- Bridgeland T., Hall algebras and curve-counting invariants, J. Amer.
  Math. Soc. 24 (2011), 969-998, arXiv:1002.4374.
 
- Choi J., Katz S., Klemm A., The refined BPS index from stable pair invariants,
  arXiv:1210.4403.
 
- Davison B., Maulik D., Schuermann J., Szendrői B., Purity for graded
  potentials and cluster positivity, unpublished.
 
- Dimca A., Szendrői B., The Milnor fibre of the Pfaffian and the
  Hilbert scheme of four points on C3, Math. Res.
  Lett. 16 (2009), 1037-1055, arXiv:0904.2419.
 
- Dimofte T., Gukov S., Refined, motivic, and quantum, Lett. Math. Phys.
  91 (2010), 1-27, arXiv:0904.1420.
 
- Efimov A.I., Quantum cluster variables via vanishing cycles,
  arXiv:1112.3601.
 
- Gopakumar R., Vafa C., M-theory and topological strings - I,
  hep-th/9809187.
 
- Gukov S., Stosic M., Homological algebra of knots and BPS states,
  arXiv:1112.0030.
 
- Hollowood T., Iqbal A., Vafa C., Matrix models, geometric engineering and
  elliptic genera, J. High Energy Phys. 2008 (2008), no. 3,
  069, 81 pages, hep-th/0310272.
 
- Iqbal A., Kashani-Poor A.K., SU(N) geometries and topological string
  amplitudes, Adv. Theor. Math. Phys. 10 (2006), 1-32,
  hep-th/0306032.
 
- Iqbal A., Kozçaz C., Vafa C., The refined topological vertex,
  J. High Energy Phys. 2009 (2009), no. 10, 069, 58 pages,
  hep-th/0701156.
 
- Katz S., Klemm A., Vafa C., Geometric engineering of quantum field theories,
  Nuclear Phys. B 497 (1997), 173-195,
  hep-th/9609239.
 
- Klebanov I.R., Witten E., Superconformal field theory on threebranes at a
  Calabi-Yau singularity, Nuclear Phys. B 536 (1999),
  199-218, hep-th/9807080.
 
- Kontsevich M., Soibelman Y., Cohomological Hall algebra, exponential Hodge
  structures and motivic Donaldson-Thomas invariants, Commun.
  Number Theory Phys. 5 (2011), 231-352, arXiv:1006.2706.
 
- Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson-Thomas
  invariants and cluster transformations, arXiv:0811.2435.
 
- Losev A., Moore G., Nekrasov N., Shatashvili S., Four-dimensional avatars of
  two-dimensional RCFT, Nuclear Phys. B Proc. Suppl. 46
  (1996), 130-145, hep-th/9509151.
 
- Maulik D., Nekrasov N., Okounkov A., Pandharipande R., Gromov-Witten theory
  and Donaldson-Thomas theory. I, Compos. Math. 142
  (2006), 1263-1285, math.AG/0312059.
 
- Morrison A., Mozgovoy S., Nagao K., Szendrői B., Motivic
  Donaldson-Thomas invariants of the conifold and the refined topological
  vertex, Adv. Math. 230 (2012), 2065-2093,
  arXiv:1107.5017.
 
- Nagao K., Nakajima H., Counting invariant of perverse coherent sheaves and its
  wall-crossing, Int. Math. Res. Not. 2011 (2011),
  3885-3938, arXiv:0809.2992.
 
- Nakajima H., Yoshioka K., Instanton counting on blowup. I. 4-dimensional pure
  gauge theory, Invent. Math. 162 (2005), 313-355,
  math.AG/0306198.
 
- Nakajima H., Yoshioka K., Instanton counting on blowup. II. K-theoretic
  partition function, Transform. Groups 10 (2005), 489-519,
  math.AG/0505553.
 
- Nekrasov N.A., Seiberg-Witten prepotential from instanton counting,
  Adv. Theor. Math. Phys. 7 (2003), 831-864,
  hep-th/0206161.
 
- Nekrasov N.A., Okounkov A., Seiberg-Witten theory and random partitions, in
  The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser
  Boston, Boston, MA, 2006, 525-596, hep-th/0306238.
 
- Nekrasov N.A., Okounkov A., The index of M-theory, work in progress.
 
- Okounkov A., The index and the vertex, Talk at
  Brandeis-Harvard-MIT-Northeastern Joint Mathematics Colloquium, December 1,
  2011.
 
- Pandharipande R., Thomas R.P., Curve counting via stable pairs in the derived
  category, Invent. Math. 178 (2009), 407-447.
 
- Saito M., Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci.
  24 (1988), 849-995.
 
- Szendrői B., Non-commutative Donaldson-Thomas invariants and the
  conifold, Geom. Topol. 12 (2008), 1171-1202,
 arXiv:0705.3419.
 
- Tachikawa Y., Five-dimensional Chern-Simons terms and Nekrasov's
  instanton counting, J. High Energy Phys. 2004 (2004), 050,
  13 pages, hep-th/0401184.
 
 
 | 
 |