| 
 SIGMA 8 (2012), 089, 31 pages      arXiv:1209.2019     
https://doi.org/10.3842/SIGMA.2012.089 
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications” 
Solutions of Helmholtz and Schrödinger Equations with  Side Condition and Nonregular Separation of Variables
Philip Broadbridge a,  Claudia M. Chanu b and Willard Miller Jr. c
 a) School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
 b) Dipartimento di Matematica G. Peano,  Università di Torino, Torino, Italy
 c) School of Mathematics,  University of Minnesota, Minneapolis, Minnesota, 55455, USA
 
 
Received September 21, 2012, in final form November 19, 2012; Published online November 26, 2012 
Abstract
 
Olver and Rosenau studied  group-invariant solutions of (generally nonlinear) partial differential equations through the  imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N−1 commuting second-order symmetry operators, modulo a second-order linear  side condition corresponds  to nonregular separation of variables in an orthogonal coordinate system,  characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation  of variables. We develop the theory for these systems and provide  examples.
  
 Key words:
nonregular separation of variables; Helmholtz equation; Schrödinger equation. 
pdf (493 kb)  
tex (35 kb)
 
 
References
 
- Arrigo D.J., Broadbridge P., Hill J.M., Nonclassical symmetry solutions and the
  methods of Bluman-Cole and Clarkson-Kruskal, J. Math.
  Phys. 34 (1993), 4692-4703.
 
- Benenti S., Chanu C., Rastelli G., Variable-separation theory for the null
  Hamilton-Jacobi equation, J. Math. Phys. 46 (2005),
  042901, 29 pages.
 
- Benenti S., Francaviglia M., The theory of separability of the
  Hamilton-Jacobi equation and its applications to general relativity, in
  General Relativity and Gravitation, Vol. 1, Plenum, New York, 1980,
  393-439.
 
- Bérubé J., Winternitz P., Integrable and superintegrable quantum
  systems in a magnetic field, J. Math. Phys. 45 (2004),
  1959-1973, math-ph/0311051.
 
- Bluman G.W., Cole J.D., Similarity methods for differential equations,
  Applied Mathematical Sciences, Vol. 13, Springer-Verlag, New York,
  1974.
 
- Bluman G.W., Cole J.D., The general similarity solution of the heat equation,
  J. Math. Mech. 18 (1969), 1025-1042.
 
- Cannon J.W., Floyd W.J., Kenyon R., Parry W.R., Hyperbolic geometry, in Flavors
  of Geometry, Math. Sci. Res. Inst. Publ., Vol. 31, Cambridge University
  Press, Cambridge, 1997, 59-115.
 
- Chanu C., Geometry of non-regular separation, in Symmetries and Overdetermined
  Systems of Partial Differential Equations, IMA Vol. Math. Appl.,
  Vol. 144, Editors M. Eastwood, W. Miller Jr., Springer, New York, 2008,
  305-317.
 
- Chanu C., Rastelli G., Fixed energy R-separation for Schrödinger
  equation, Int. J. Geom. Methods Mod. Phys. 3 (2006),
  489-508, nlin.SI/0512033.
 
- Clarkson P.A., Mansfield E.L., Algorithms for the nonclassical method of
  symmetry reductions, SIAM J. Appl. Math. 54 (1994),
  1693-1719.
 
- Degiovanni L., Rastelli G., Complex variables for separation of the
  Hamilton-Jacobi equation on real pseudo-Riemannian manifolds,
  J. Math. Phys. 48 (2007), 073519, 23 pages,
  nlin.SI/0610012.
 
- Eisenhart L.P., Enumeration of potentials for which one-particle
  Schrödinger equations are separable, Phys. Rev. 74
  (1948), 87-89.
 
- Eisenhart L.P., Riemannian geometry, 2nd ed., Princeton University Press,
  Princeton, N.J., 1949.
 
- Eisenhart L.P., Separable systems of Stäckel, Ann. of Math. (2)
  35 (1934), 284-305.
 
- Kalnins E.G., Separation of variables for Riemannian spaces of constant
  curvature, Pitman Monographs and Surveys in Pure and Applied
  Mathematics, Vol. 28, Longman Scientific & Technical, Harlow, 1986.
 
- Kalnins E.G., Miller Jr. W., Conformal Killing tensors and variable
  separation for Hamilton-Jacobi equations, SIAM J. Math. Anal.
  14 (1983), 126-137.
 
- Kalnins E.G., Miller Jr. W., Intrinsic characterization of variable separation
  for the partial differential equations of mechanics, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), suppl. 2,
  511-533.
 
- Kalnins E.G., Miller Jr. W., Separation of variables on n-dimensional
  Riemannian manifolds. I. The n-sphere Sn and Euclidean
 n-space Rn, J. Math. Phys. 27 (1986),
  1721-1736.
 
- Kalnins E.G., Miller Jr. W., The theory of orthogonal R-separation for
  Helmholtz equations, Adv. Math. 51 (1984), 91-106.
 
- Kalnins E.G., Miller Jr. W., Williams G.C., Recent advances in the use of
  separation of variables methods in general relativity, Philos. Trans.
  Roy. Soc. London Ser. A 340 (1992), 337-352.
 
- Levi D., Winternitz P., Nonclassical symmetry reduction: example of the
  Boussinesq equation, J. Phys. A: Math. Gen. 22 (1989),
  2915-2924.
 
- Levi-Civita T., Sulla integrazione della equazione di Hamilton-Jacobi per
  separazione di variabili, Math. Ann. 59 (1904), 383-397.
 
- Miller Jr. W., Mechanisms for variable separation in partial differential
  equations and their relationship to group theory, in Symmetries and Nonlinear
  Phenomena (Paipa, 1988), CIF Ser., Vol. 9, World Sci. Publ.,
  Teaneck, NJ, 1988, 188-221.
 
- Miller Jr. W., The technique of variable separation for partial differential
  equations, in Nonlinear Phenomena (Oaxtepec, 1982), Lecture Notes
  in Phys., Vol. 189, Springer, Berlin, 1983, 184-208.
 
- Miller Jr. W., Kalnins E.G., Separation of variables methods for systems of
  differential equations in mathematical physics, in Lie Theory, Differential
  Equations and Representation Theory (Montreal, PQ, 1989), Univ.
  Montréal, Montreal, QC, 1990, 283-300.
 
- Nucci M.C., Clarkson P.A., The nonclassical method is more general than the
  direct method for symmetry reductions. An example of the
  FitzHugh-Nagumo equation, Phys. Lett. A 164 (1992),
  49-56.
 
- Olver P.J., Rosenau P., Group-invariant solutions of differential equations,
  SIAM J. Appl. Math. 47 (1987), 263-278.
 
- Olver P.J., Rosenau P., The construction of special solutions to partial
  differential equations, Phys. Lett. A 114 (1986), 107-112.
 
- Ovsiannikov L.V., Group analysis of differential equations, Academic Press
  Inc., New York, 1982.
 
- Prus R., Sym A., Non-regular and non-Stäckel R-separation for
  3-dimensional Helmholtz equation and cyclidic solitons of wave equation,
  Phys. Lett. A 336 (2005), 459-462.
 
- Shapovalov V.N., Separation of variables in a second-order linear differential
  equation, Differ. Equ. 16 (1981), 1212-1220.
 
- Shapovalov V.N., Stäckel spaces, Sib. Math. J. 20 (1979),
  790-800.
 
- Stäckel P., Über die Integration der Hamilton-Jacobischen differential
  Gleichung mittelst Separation der Variabelen, Habilitationsschrift, Halle,
  1891.
 
- Sym A., Solitons of wave equation, J. Nonlinear Math. Phys.
  12 (2005), suppl. 1, 648-659.
 
- Sym A., Szereszewski A., On Darboux's approach to R-separability of
  variables, SIGMA 7 (2011), 095, 21 pages,
  arXiv:1102.2637.
 
- Thirring W., A course in mathematical physics. Vol. 3. Quantum mechanics of
  atoms and molecules, Lecture Notes in Physics, Vol. 141,
  Springer-Verlag, New York, 1981.
 
 
 | 
 |