| 
 SIGMA 8 (2012), 094, 707 pages       arXiv:1212.1785      
https://doi.org/10.3842/SIGMA.2012.094 
Contribution to the Special Issue “Mirror Symmetry and Related Topics” 
Minkowski Polynomials and Mutations
Mohammad Akhtar a,  Tom Coates a,  Sergey Galkin b and Alexander M. Kasprzyk a
 a) Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
 b) Universität Wien, Fakultät für Mathematik, Garnisongasse 3/14,  A-1090 Wien, Austria
 
 
Received June 14, 2012, in final form December 01, 2012; Published online December 08, 2012 
Abstract
 
Given a Laurent polynomial f, one can form the period of
f: this is a function of one complex variable that plays an
  important role in mirror symmetry for Fano manifolds.  Mutations are
  a particular class of birational transformations acting on Laurent
  polynomials in two variables; they preserve the period and are
  closely connected with cluster algebras. We propose a
  higher-dimensional analog of mutation acting on Laurent polynomials
f in n variables. In particular we give a combinatorial
  description of mutation acting on the Newton polytope P of f,
  and use this to establish many basic facts about mutations.
  Mutations can be understood combinatorially in terms of Minkowski
  rearrangements of slices of P, or in terms of piecewise-linear
  transformations acting on the dual polytope P* (much like
  cluster transformations).  Mutations map Fano polytopes to Fano
  polytopes, preserve the Ehrhart series of the dual polytope, and
  preserve the period of f.  Finally we use our results to show
  that Minkowski polynomials, which are a family of Laurent
  polynomials that give mirror partners to many three-dimensional Fano
  manifolds, are connected by a sequence of mutations if and only if
  they have the same period.
  
 Key words:
mirror symmetry; Fano manifold; Laurent polynomial;
  mutation; cluster transformation; Minkowski decomposition; Minkowski
  polynomial; Newton polytope; Ehrhart series; quasi-period collapse. 
pdf (483 kb)  
tex (5711 kb) 
Appendices (8328 kb)
 
 
References
 
- Auroux D., Mirror symmetry and T-duality in the complement of an
  anticanonical divisor, J. Gökova Geom. Topol. GGT 1
  (2007), 51-91, arXiv:0706.3207.
 
- Batyrev V.V., Dual polyhedra and mirror symmetry for Calabi-Yau
  hypersurfaces in toric varieties, J. Algebraic Geom. 3
  (1994), 493-535, alg-geom/9310003.
 
- Batyrev V.V., Toric degenerations of Fano varieties and constructing mirror
  manifolds, in The Fano Conference, Univ. Torino, Turin, 2004, 109-122,
  alg-geom/9712034.
 
- Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Conifold transitions
  and mirror symmetry for Calabi-Yau complete intersections in
  Grassmannians, Nuclear Phys. B 514 (1998), 640-666,
  alg-geom/9710022.
 
- Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Mirror symmetry and
  toric degenerations of partial flag manifolds, Acta Math.
  184 (2000), 1-39, math.AG/9803108.
 
- Batyrev V.V., Kreuzer M., Integral cohomology and mirror symmetry for
  Calabi-Yau 3-folds, in Mirror Symmetry. V, AMS/IP Stud. Adv.
  Math., Vol. 38, Amer. Math. Soc., Providence, RI, 2006, 255-270,
  math.AG/0505432.
 
- Beck M., Sam S.V., Woods K.M., Maximal periods of (Ehrhart)
  quasi-polynomials, J. Combin. Theory Ser. A 115 (2008),
  517-525, math.CO/0702242.
 
- Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A.M., Fano varieties and
  extremal Laurent polynomials, http://www.fanosearch.net/.
 
- Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A.M., Mirror symmetry and
  Fano manifolds, Preprint, 2012.
 
- Cruz Morales J.A., Galkin S., Upper bounds for mutations of potentials,
  Preprint IPMU 12-0110, 2012.
 
- Eguchi T., Hori K., Xiong C.S., Gravitational quantum cohomology,
  Internat. J. Modern Phys. A 12 (1997), 1743-1782,
  hep-th/9605225.
 
- Fiset M.H.J., Kasprzyk A.M., A note on palindromic δ-vectors for
  certain rational polytopes, Electron. J. Combin. 15 (2008),
  Note 18, 4 pages, arXiv:0806.3942.
 
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer.
  Math. Soc. 15 (2002), 497-529, math.RT/0104151.
 
- Galkin S., Usnich A., Mutations of potentials, Preprint IPMU 10-0100, 2010.
 
- Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and
  multidimensional determinants, Mathematics: Theory & Applications,
  Birkhäuser Boston Inc., Boston, MA, 1994.
 
- Haase C., McAllister T.B., Quasi-period collapse and GLn(Z)-scissors congruence in rational polytopes, in Integer Points in
  Polyhedra - Geometry, Number Theory, Representation Theory, Algebra,
  Optimization, Statistics, Contemp. Math., Vol. 452, Amer. Math.
  Soc., Providence, RI, 2008, 115-122, arXiv:0709.4070.
 
- Hori K., Vafa C., Mirror symmetry, hep-th/0002222.
 
- Ilten N.O., Mutations of Laurent polynomials and flat families with toric
  fibers, SIGMA 8 (2012), 047, 7 pages, arXiv:1205.4664.
 
- Kasprzyk A.M., Canonical toric Fano threefolds, Canad. J. Math.
  62 (2010), 1293-1309, arXiv:0806.2604.
 
- Kreuzer M., Skarke H., Classification of reflexive polyhedra in three
  dimensions, Adv. Theor. Math. Phys. 2 (1998), 853-871,
  hep-th/9805190.
 
- Kreuzer M., Skarke H., Complete classification of reflexive polyhedra in four
  dimensions, Adv. Theor. Math. Phys. 4 (2000), 1209-1230,
  hep-th/0002240.
 
- Lam T., Pylyavskyy P., Laurent phenomenon algebras, arXiv:1206.2611.
 
- Prokhorov Y.G., The degree of Fano threefolds with canonical Gorenstein
  singularities, Sb. Math. 196 (2005), 77-114,
  math.AG/0405347.
 
- Przyjalkowski V., On Landau-Ginzburg models for Fano varieties,
  Commun. Number Theory Phys. 1 (2007), 713-728,
  arXiv:0707.3758.
 
- Stanley R.P., Decompositions of rational convex polytopes, Ann.
  Discrete Math. 6 (1980), 333-342.
 
 
 | 
 |