| 
 SIGMA 8 (2012), 101, 17 pages       arXiv:1212.4234      
https://doi.org/10.3842/SIGMA.2012.101 
Contribution to the Special Issue “Mirror Symmetry and Related Topics” 
Renormalization Method and Mirror Symmetry
Si Li
 Department of mathematics, Northwestern University, 2033 Sheridan Road, Evanston IL 60208, USA
 
 
Received May 07, 2012, in final form December 13, 2012; Published online December 18, 2012 
Abstract
 
This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi-Yau manifolds, and explain the Fock space construction via the renormalization techniques of gauge theory. We also give a physics interpretation of the Virasoro constraints as the symmetry of the classical BCOV action functional, and discuss the Virasoro constraints in the quantum theory.
  
 Key words:
BCOV; Calabi-Yau; renormalization; mirror symmetry. 
pdf (415 kb)  
tex (22 kb)
 
 
References
 
- Barannikov S., Extended moduli spaces and mirror symmetry in dimensions
  n>3, Ph.D. thesis, University of California, Berkeley, 1999,
  math.AG/9903124.
 
- Barannikov S., Non-commutative periods and mirror symmetry in higher
  dimensions, Comm. Math. Phys. 228 (2002), 281-325.
 
- Barannikov S., Quantum periods. I. Semi-infinite variations of Hodge
  structures, Int. Math. Res. Not. 2001 (2001), no. 23,
  1243-1264, math.AG/0006193.
 
- Barannikov S., Kontsevich M., Frobenius manifolds and formality of Lie
  algebras of polyvector fields, Int. Math. Res. Not. 1998
  (1998), no. 4, 201-215, alg-geom/9710032.
 
- Bershadsky M., Cecotti S., Ooguri H., Vafa C., Kodaira-Spencer theory of
  gravity and exact results for quantum string amplitudes, Comm. Math.
  Phys. 165 (1994), 311-427, hep-th/9309140.
 
- Candelas P., de la Ossa X.C., Green P.S., Parkes L., A pair of Calabi-Yau
  manifolds as an exactly soluble superconformal theory, Nuclear
  Phys. B 359 (1991), 21-74.
 
- Coates T., Givental A.B., Quantum Riemann-Roch, Lefschetz and Serre,
  Ann. of Math. (2) 165 (2007), 15-53,
  math.AG/0110142.
 
- Costello K.J., Renormalization and effective field theory, Mathematical
  Surveys and Monographs, Vol. 170, American Mathematical Society, Providence,
  RI, 2011.
 
- Costello K.J., Li S., Open-closed BCOV theory on Calabi-Yau manifolds, in
  preparation.
 
- Costello K.J., Li S., Quantum BCOV theory on Calabi-Yau manifolds and the higher
  genus B-model, arXiv:1201.4501.
 
- Dubrovin B., Zhang Y., Frobenius manifolds and Virasoro constraints,
  Selecta Math. (N.S.) 5 (1999), 423-466,
  math.AG/9808048.
 
- Eguchi T., Hori K., Xiong C.S., Quantum cohomology and Virasoro algebra,
  Phys. Lett. B 402 (1997), 71-80, hep-th/9703086.
 
- Eguchi T., Jinzenji M., Xiong C.S., Quantum cohomology and free-field
  representation, Nuclear Phys. B 510 (1998), 608-622,
  hep-th/9709152.
 
- Getzler E., The Virasoro conjecture for Gromov-Witten invariants, in
  Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp.
  Math., Vol. 241, Amer. Math. Soc., Providence, RI, 1999, 147-176,
  math.AG/9812026.
 
- Givental A.B., A mirror theorem for toric complete intersections, in
  Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996),
  Progr. Math., Vol. 160, Birkhäuser Boston, Boston, MA, 1998,
  141-175, alg-geom/9701016.
 
- Givental A.B., Gromov-Witten invariants and quantization of quadratic
  Hamiltonians, Mosc. Math. J. 1 (2001), 551-568,
  math.AG/0108100.
 
- Givental A.B., Symplectic geometry of Frobenius structures, in Frobenius
  Manifolds, Aspects Math., Vol. E36, Vieweg, Wiesbaden, 2004,
  91-112, math.AG/0305409.
 
- Huang M.X., Klemm A., Quackenbush S., Topological string theory on compact
  Calabi-Yau: modularity and boundary conditions, in Homological Mirror
  Symmetry, Lecture Notes in Phys., Vol. 757, Springer, Berlin, 2009,
  45-102, hep-th/0612125.
 
- Kaneko M., Zagier D., A generalized Jacobi theta function and quasimodular
  forms, in The Moduli Space of Curves (Texel Island, 1994), Progr.
  Math., Vol. 129, Birkhäuser Boston, Boston, MA, 1995, 165-172.
 
- Li J., Tian G., Virtual moduli cycles and Gromov-Witten invariants of
  algebraic varieties, J. Amer. Math. Soc. 11 (1998),
  119-174, alg-geom/9602007.
 
- Li S., BCOV theory on the elliptic curve and higher genus mirror symmetry,
  arXiv:1112.4063.
 
- Li S., Calabi-Yau geometry and higher genus mirror symmetry, Ph.D. thesis,
  Harvard University, 2011.
 
- Li S., Feynman graph integrals and almost modular forms, Commun. Number
  Theory Phys. 6 (2012), 129-157, arXiv:1112.4015.
 
- Lian B.H., Liu K., Yau S.T., Mirror principle. I, Asian J. Math.
  1 (1997), 729-763, alg-geom/9712011.
 
- Losev A., Shadrin S., Shneiberg I., Tautological relations in Hodge field
  theory, Nuclear Phys. B 786 (2007), 267-296,
  arXiv:0704.1001.
 
- Okounkov A., Pandharipande R., Virasoro constraints for target curves,
  Invent. Math. 163 (2006), 47-108,
  math.AG/0308097.
 
- Ruan Y., Tian G., A mathematical theory of quantum cohomology,
  J. Differential Geom. 42 (1995), 259-367.
 
- Shadrin S., BCOV theory via Givental group action on cohomological fields
  theories, Mosc. Math. J. 9 (2009), 411-429,
  arXiv:0810.0725.
 
- Yamaguchi S., Yau S.T., Topological string partition functions as polynomials,
  J. High Energy Phys. 2004 (2004), no. 7, 047, 20 pages,
  hep-th/0406078.
 
 
 | 
 |