| 
 SIGMA 8 (2012), 103, 54 pages       arXiv:1203.5732      
https://doi.org/10.3842/SIGMA.2012.103 
Contribution to the Special Issue “Geometrical Methods in Mathematical Physics” 
Whitham's Method and Dubrovin-Novikov Bracket in Single-Phase and Multiphase Cases
Andrei Ya. Maltsev
 L.D. Landau Institute for Theoretical Physics, 1A Ak. Semenova Ave., Chernogolovka, Moscow reg., 142432, Russia
 
 
Received April 23, 2012, in final form December 11, 2012; Published online December 24, 2012 
Abstract
 
In this paper we examine in detail the procedure of averaging
of the local field-theoretic Poisson brackets proposed by B.A. Dubrovin
and S.P. Novikov for the method of Whitham.
The main attention is paid to
the questions of justification and the conditions of applicability of the
Dubrovin-Novikov procedure.
Separate consideration is given to special
features of single-phase and multiphase cases.
In particular, one of the
main results is the insensitivity of the procedure of bracket averaging
to the appearance of ''resonances'' which can arise in the multi-phase
situation.
  
 Key words:
quasiperiodic solutions; slow modulations; Hamiltonian structures. 
pdf (701 kb)  
tex (54 kb)
 
 
References
 
- Ablowitz M.J., Benney D.J., The evolution of multi-phase modes for nonlinear
  dispersive waves, Stud. Appl. Math. 49 (1970), 225-238.
 
- Alekseev V.L., On non-local Hamiltonian operators of hydrodynamic type
  connected with Whitham's equations, Russian Math. Surveys
  50 (1995), 1253-1255.
 
- Arnol'd V.I., Geometrical methods in the theory of ordinary differential
  equations, Grundlehren der Mathematischen Wissenschaften, Vol. 250,
  2nd ed., Springer-Verlag, New York, 1988.
 
- Dobrokhotov S.Yu., Resonance correction of an adiabatically perturbed finite-gap
  almost periodic solution of the Korteweg-de Vries equation,
  Math. Notes 44 (1988), 551-555.
 
- Dobrokhotov S.Yu., Resonances in asymptotic solutions of the Cauchy problem for
  the Schrödinger equation with rapidly oscillating finite-zone potential,
  Math. Notes 44 (1988), 656-668.
 
- Dobrokhotov S.Yu., Krichever I.M., Multi-phase solutions of the
  Benjamin-Ono equation and their averaging, Math. Notes
  49 (1991), 583-594.
 
- Dobrokhotov S.Yu., Maslov V.P., Finite-gap almost periodic solutions in the
  WKB approximation, J. Sov. Math. 15 (1980), 1433-1487.
 
- Dobrokhotov S.Yu., Maslov V.P., Multiphase asymptotics of nonlinear partial
  differential equations with a small parameter, in Mathematical Physics
  Reviews, Soviet Sci. Rev. Sect. C Math. Phys. Rev., Vol. 3, Harwood
  Academic Publ., Chur, 1982, 221-311.
 
- Dobrokhotov S.Yu., Minenkov D.S., Remark on the phase shift in the
  Kuzmak-Whitham ansatz, Theoret. Math. Phys. 166
  (2011), 303-316.
 
- Dubrovin B.A., Inverse problem for periodic finite-zoned potentials in the
  theory of scattering, Funct. Anal. Appl. 9 (1975), 61-62.
 
- Dubrovin B.A., Theta functions and non-linear equations, Russian Math.
  Surveys 36 (1981), no. 2, 11-92.
 
- Dubrovin B.A., Matveev V.B., Novikov S.P., Nonlinear equations of
  Korteweg-de Vries type, finite-band linear operators and Abelian
  varieties, Russian Math. Surveys 31 (1976), no. 1, 59-146.
 
- Dubrovin B.A., Novikov S.P., A periodic problem for the Korteweg-de Vries
  and Sturm-Liouville equations. Their connection with algebraic
  geometry, Soviet Math. Dokl. 15 (1976), 1597-1601.
 
- Dubrovin B.A., Novikov S.P., Hamiltonian formalism of one-dimensional systems
  of the hydrodynamic type and the Bogolyubov-Whitham averaging method,
  Soviet Math. Dokl. 27 (1983), 665-669.
 
- Dubrovin B.A., Novikov S.P., Hydrodynamics of soliton lattices, Sov.
  Sci. Rev. Sect. C 9 (1992), no. 4, 1-136.
 
- Dubrovin B.A., Novikov S.P., Hydrodynamics of weakly deformed soliton lattices.
  Differential geometry and Hamiltonian theory, Russian Math.
  Surveys 44 (1989), no. 6, 35-124.
 
- Dubrovin B.A., Novikov S.P., Periodic and conditionally periodic analogs of the
  many-soliton solutions of the Korteweg-de Vries equation, Soviet
  Physics JETP 67 (1974), 1058-1063.
 
- Ferapontov E.V., Differential geometry of nonlocal Hamiltonian operators of
  hydrodynamic type, Funct. Anal. Appl. 25 (1991), 195-204.
 
- Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type:
  differential geometry and applications, in Topics in Topology and
  Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 170,
  Amer. Math. Soc., Providence, RI, 1995, 33-58.
 
- Ferapontov E.V., Nonlocal matrix Hamiltonian operators, differential geometry
  and applications, Theoret. Math. Phys. 91 (1992), 642-649.
 
- Ferapontov E.V., Restriction, in the sense of Dirac, of the Hamiltonian
  operator δij(d/dx) to a surface of the Euclidean space with a
  plane normal connection, Funct. Anal. Appl. 26 (1992),
  298-300.
 
- Flaschka H., Forest M.G., McLaughlin D.W., Multiphase averaging and the inverse
  spectral solution of the Korteweg-de Vries equation, Comm. Pure
  Appl. Math. 33 (1980), 739-784.
 
- Haberman R., Standard form and a method of averaging for strongly nonlinear
  oscillatory dispersive traveling waves, SIAM J. Appl. Math.
  51 (1991), 1638-1652.
 
- Haberman R., The modulated phase shift for weakly dissipated nonlinear
  oscillatory waves of the Korteweg-de Vries type, Stud. Appl.
  Math. 78 (1988), 73-90.
 
- Hayes W.D., Group velocity and nonlinear dispersive wave propagation,
  Proc. R. Soc. Lond. Ser. A 332 (1973), 199-221.
 
- Its A.R., Matveev V.B., Hill's operator with finitely many gaps, Funct.
  Anal. Appl. 9 (1975), 65-66.
 
- Its A.R., Matveev V.B., Schrödinger operators with finite-gap spectrum and
  N-soliton solutions of the Korteweg-de Vries equation,
  Theoret. Math. Phys. 23 (1975), 343-355.
 
- Krichever I.M., Perturbation theory in periodic problems for two-dimensional
  integrable systems, Sov. Sci. Rev. Sect. C 9 (1992), no. 2,
  1-103.
 
- Krichever I.M., The averaging method for two-dimensional "integrable"
  equations, Funct. Anal. Appl. 22 (1988), 200-213.
 
- Krichever I.M., The "Hessian" of integrals of the Korteweg-de Vries
  equation and perturbations of finite-gap solutions, Sov. Math. Dokl.
  270 (1983), 757-761.
 
- Luke J.C., A perturbation method for nonlinear dispersive wave problems,
  Proc. R. Soc. Lond. Ser. A 292 (1966), 403-412.
 
- Maltsev A.Ya., Conservation of Hamiltonian structures in Whitham's averaging
  method, Izv. Math. 63 (1999), 1171-1201.
 
- Maltsev A.Ya., Deformations of the Whitham systems in the almost linear case,
  in Geometry, Topology, and Mathematical Physics, Amer. Math. Soc.
  Transl. Ser. 2, Vol. 224, Amer. Math. Soc., Providence, RI, 2008, 193-212,
  arXiv:0709.4618.
 
- Maltsev A.Ya., The averaging of nonlocal Hamiltonian structures in Whitham's
  method, Int. J. Math. Math. Sci. 30 (2002), 399-434,
  solv-int/9910011.
 
- Maltsev A.Ya., Whitham systems and deformations, J. Math. Phys.
  47 (2006), 073505, 18 pages, nlin.SI/0509033.
 
- Maltsev A.Ya., Novikov S.P., On the local systems Hamiltonian in the weakly
  non-local Poisson brackets, Phys. D 156 (2001), 53-80,
  nlin.SI/0006030.
 
- Maltsev A.Ya., Pavlov M.V., On Whitham's averaging method, Funct.
  Anal. Appl. 29 (1995), 6-19, nlin.SI/0306053.
 
- Mokhov O.I., Ferapontov E.V., Non-local Hamiltonian operators of hydrodynamic
  type related to metrics of constant curvature, Russian Math. Surveys
  45 (1990), 218-219.
 
- Newell A.C., Solitons in mathematics and physics, CBMS-NSF Regional
  Conference Series in Applied Mathematics, Vol. 48, Society for Industrial
  and Applied Mathematics (SIAM), Philadelphia, PA, 1985.
 
- Novikov S.P., Geometry of conservative systems of hydrodynamic type. The
  averaging method for field-theoretic systems, Russian Math. Surveys
  40 (1985), no. 4, 85-98.
 
- Novikov S.P., The periodic problem for the Korteweg-de Vries equation,
  Funct. Anal. Appl. 8 (1974), 236-246.
 
- Novikov S.P., Manakov S.V., Pitaevski L.P., Zakharov V.E., Theory of
  solitons. The inverse scattering method, Contemporary Soviet Mathematics,
  Plenum, New York, 1984.
 
- Pavlov M.V., Elliptic coordinates and multi-Hamiltonian structures of
  hydrodynamic-type systems, Russian Acad. Sci. Dokl. Math.
  50 (1995), 374-377.
 
- Pavlov M.V., Multi-Hamiltonian structures of the Whitham equations,
  Russian Acad. Sci. Dokl. Math. 50 (1995), 220-223.
 
- Schmidt W.M., Diophantine approximation, Lecture Notes in Mathematics,
  Vol. 785, Springer-Verlag, Berlin - Heidelberg - New York, 1980.
 
- Tsarev S.P., On Poisson bracket and one-dimensional systems of hydrodynamic
  type, Soviet Math. Dokl. 31 (1985), 488-491.
 
- Vorob'ev Y.M., Dobrokhotov S.Yu., Completeness of the system of eigenfunctions of
  a nonelliptic operator on the torus, generated by a Hill operator with a
  finite-zone potential, Funct. Anal. Appl. 22 (1988),
  137-139.
 
- Whitham G.B., A general approach to linear and non-linear dispersive waves
  using a Lagrangian, J. Fluid Mech. 22 (1965), 273-283.
 
- Whitham G.B., Linear and nonlinear waves, Pure and Applied Mathematics,
  Wiley-Interscience, New York, 1974.
 
- Whitham G.B., Non-linear dispersive waves, Proc. R. Soc. Lond. Ser. A
  283 (1965), 238-261.
 
 
 | 
 |