|
SIGMA 8 (2012), 104, 5 pages arXiv:1210.0226
https://doi.org/10.3842/SIGMA.2012.104
Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
Tomoki Nakanishi
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8604, Japan
Received November 15, 2012, in final form December 22, 2012; Published online December 25, 2012
Abstract
Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers-Ramanujan type identities
via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities,
some of which are known, while some are left conjectural. We confirm and explain all of them
by showing the connection with Y-systems
associated with (untwisted and twisted) quantum affine Kac-Moody algebras.
Key words:
double affine Hecke algebra; dilogarithm; Y-system.
pdf (291 kb)
tex (10 kb)
References
- Cecotti S., Neitzke A., Vafa C., R-twisting and 4d/2d correspondences,
arXiv:1006.3435.
- Chapoton F., Functional identities for the Rogers dilogarithm associated to
cluster Y-systems, Bull. London Math. Soc. 37 (2005),
755-760.
- Cherednik I., Feigin B., Rogers-Ramanujan type identities and Nil-DAHA,
arXiv:1209.1978 (especially version 2).
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-
and Y-systems, dilogarithm identities, and cluster algebras
I: Type Br, Publ. Res. Inst. Math. Sci., to appear,
arXiv:1001.1880.
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-
and Y-systems, dilogarithm identities, and cluster algebras
II: Types Cr, F4, and G2, Publ. Res. Inst. Math.
Sci., to appear, arXiv:1001.1881.
- Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J., Periodicities of
T-systems and Y-systems, Nagoya Math. J. 197
(2010), 59-174, arXiv:0812.0667.
- Kashaev R.M., Nakanishi T., Classical and quantum dilogarithm identities,
SIGMA 7 (2011), 102, 29 pages, arXiv:1104.4630.
- Lee C.H., Nahm's conjecture and Y-system, arXiv:1109.3667.
- Nakanishi T., Dilogarithm identities for conformal field theories and cluster
algebras: simply laced case, Nagoya Math. J. 202 (2011),
23-43, arXiv:0909.5480.
|
|