|
SIGMA 9 (2013), 015, 13 pages arXiv:1301.1432
https://doi.org/10.3842/SIGMA.2013.015
On a Trivial Family of Noncommutative Integrable Systems
Andrey V. Tsiganov
St. Petersburg State University, St. Petersburg, Russia
Received October 17, 2012, in final form February 18, 2013; Published online February 22, 2013
Abstract
We discuss trivial deformations of the canonical Poisson brackets associated with the
Toda lattices, relativistic Toda lattices, Henon-Heiles, rational Calogero-Moser
and Ruijsenaars-Schneider systems and
apply one of these deformations to construct a new trivial family of noncommutative integrable
systems.
Key words:
bi-Hamiltonian geometry; noncommutative integrable systems.
pdf (321 kb)
tex (19 kb)
References
- Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings
Publishing Co. Inc., Reading, Mass., 1978.
- Arnol'd V.I., Mathematical methods of classical mechanics, Graduate
Texts in Mathematics, Vol. 60, 2nd ed., Springer-Verlag, New York, 1989.
- Arsie A., Lorenzoni P., On bi-Hamiltonian deformations of exact pencils of
hydrodynamic type, J. Phys. A: Math. Theor. 44 (2011),
225205, 31 pages, arXiv:1101.0167.
- Ayadi V., Fehér L., Görbe T.F., Superintegrability of rational
Ruijsenaars-Schneider systems and their action-angle duals,
J. Geom. Symmetry Phys. 27 (2012), 27-44,
arXiv:1209.1314.
- Benenti S., Chanu C., Rastelli G., The super-separability of the three-body
inverse-square Calogero system, J. Math. Phys. 41 (2000),
4654-4678.
- Broadbridge P., Chanu C.M., Miller Jr. W., Solutions of Helmholtz and
Schrödinger equations with side condition and nonregular separation of
variables, SIGMA 8 (2012), 089, 31 pages,
arXiv:1209.2019.
- Calogero F., Solution of a three-body problem in one dimension,
J. Math. Phys. 10 (1969), 2191-2196.
- Das A., Okubo S., A systematic study of the Toda lattice, Ann.
Physics 190 (1989), 215-232.
- Degiovanni L., Magri F., Sciacca V., On deformation of Poisson manifolds of
hydrodynamic type, Comm. Math. Phys. 253 (2005), 1-24,
nlin.SI/0103052.
- Fernandes R.L., On the master symmetries and bi-Hamiltonian structure of the
Toda lattice, J. Phys. A: Math. Gen. 26 (1993),
3797-3803.
- Gonera C., Nutku Y., Super-integrable Calogero-type systems admit maximal
number of Poisson structures, Phys. Lett. A 285 (2001),
301-306, nlin.SI/0105056.
- Grammaticos B., Dorizzi B., Ramani A., Hamiltonians with high-order integrals
and the "weak-Painlevé" concept, J. Math. Phys. 25
(1984), 3470-3473.
- Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics
Library, John Wiley & Sons Inc., New York, 1994.
- Grigoryev Yu.A., Tsiganov A.V., On the Darboux-Nijenhuis variables for the
open Toda lattice, SIGMA 2 (2006), 097, 15 pages,
nlin.SI/0701004.
- Grigoryev Yu.A., Tsiganov A.V., Separation of variables for the generalized
Henon-Heiles system and system with quartic potential,
J. Phys. A: Math. Theor. 44 (2011), 255202, 9 pages,
arXiv:1012.0468.
- Grigoryev Yu.A., Tsiganov A.V., Symbolic software for separation of variables in
the Hamilton-Jacobi equation for the L-systems, Regul.
Chaotic Dyn. 10 (2005), 413-422, nlin.SI/0505047.
- Ibort A., The geometry of dynamics, Extracta Math. 11 (1996),
80-105.
- Ibort A., Magri F., Marmo G., Bihamiltonian structures and Stäckel
separability, J. Geom. Phys. 33 (2000), 210-228.
- Jacobi C.G.J., Vorlesungen über dynamik, G. Reimer, Berlin, 1884.
- Jost R., Poisson brackets (an unpedagogical lecture), Rev. Modern
Phys. 36 (1964), 572-579.
- Khesin B., Tabachnikov S., Contact complete integrability, Regul.
Chaotic Dyn. 15 (2010), 504-520, arXiv:0910.0375.
- Kuznetsov V.B., Tsiganov A.V., Separation of variables for the quantum
relativistic Toda lattices, J. Math. Sci. 80 (1994),
1802-1810, hep-th/9402111.
- Lichnerowicz A., Les variétés de Poisson et leurs algèbres de Lie
associées, J. Differential Geometry 12 (1977), 253-300.
- Maciejewski A.J., Przybylska M., Tsiganov A.V., On algebraic construction of
certain integrable and super-integrable systems, Phys. D
240 (2011), 1426-1448, arXiv:1011.3249.
- Magri F., Casati P., Falqui G., Pedroni M., Eight lectures on integrable
systems, in Integrability of Nonlinear Systems (Pondicherry, 1996),
Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 256-296.
- Oevel W., Fuchssteiner B., Zhang H., Ragnisco O., Mastersymmetries, angle
variables, and recursion operator of the relativistic Toda lattice,
J. Math. Phys. 30 (1989), 2664-2670.
- Olver P.J., Rosenau P., Group-invariant solutions of differential equations,
SIAM J. Appl. Math. 47 (1987), 263-278.
- Ovsiannikov L.V., Group analysis of differential equations, Academic Press
Inc., New York, 1982.
- Suris Y.B., On the bi-Hamiltonian structure of Toda and relativistic Toda
lattices, Phys. Lett. A 180 (1993), 419-429.
- Tempesta P., Tondo G., Generalized Lenard chains, separation of variables, and
superintegrability, Phys. Rev. E 85 (2012), 046602,
11 pages, arXiv:1205.6937.
- Tsiganov A.V., On bi-integrable natural Hamiltonian systems on Riemannian
manifolds, J. Nonlinear Math. Phys. 18 (2011), 245-268,
arXiv:1006.3914.
- Tsiganov A.V., On natural Poisson bivectors on the sphere,
J. Phys. A: Math. Theor. 44 (2011), 105203, 21 pages,
arXiv:1010.3492.
- Tsiganov A.V., On the Poisson structures for the nonholonomic Chaplygin and
Veselova problems, Regul. Chaotic Dyn. 17 (2012),
439-450.
- Tsiganov A.V., On two different bi-Hamiltonian structures for the Toda
lattice, J. Phys. A: Math. Theor. 40 (2007), 6395-6406,
nlin.SI/0701062.
- Waksjö C., Rauch-Wojciechowski S., How to find separation coordinates for
the Hamilton-Jacobi equation: a criterion of separability for natural
Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003),
301-348.
|
|