|
SIGMA 9 (2013), 050, 13 pages arXiv:1105.5770
https://doi.org/10.3842/SIGMA.2013.050
A Connection Formula for the $q$-Confluent Hypergeometric Function
Takeshi Morita
Graduate School of Information Science and Technology, Osaka University, 1-1 Machikaneyama-machi, Toyonaka, 560-0043, Japan
Received October 09, 2012, in final form July 21, 2013; Published online July 26, 2013
Abstract
We show a connection formula for the $q$-confluent hypergeometric functions ${}_2\varphi_1(a,b;0;q,x)$. Combining our connection formula with Zhang's connection formula for ${}_2\varphi_0(a,b;-;q,x)$, we obtain the connection formula for the $q$-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit $q\to 1^{-}$ of our connection formula.
Key words:
$q$-Borel-Laplace transformation; $q$-difference equation; connection problem; $q$-confluent hypergeometric function.
pdf (357 kb)
tex (14 kb)
References
- Birkhoff G.D., The generalized Riemann problem for linear differential
equations and the allied problems for linear difference and $q$-difference
equations, Proc. Amer. Acad. Arts Sci. 49 (1913), 521-568.
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
Press, Cambridge, 2004.
- Gauss C.F., Disquisitiones generales circa seriem infinitam ..., in Werke,
Bd. 3, Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1866,
123-162.
- Morita T., A connection formula of the Hahn-Exton $q$-Bessel function,
SIGMA 7 (2011), 115, 11 pages, arXiv:1105.1998.
- Ohyama Y., A unified approach to $q$-special functions of the Laplace type,
arXiv:1103.5232.
- Ramis J.P., Sauloy J., Zhang C., Local analytic classification of
$q$-difference equations, arXiv:0903.0853.
- Watson G.N., The continuation of functions defined by generalized
hypergeometric series, Trans. Camb. Phil. Soc. 21 (1910),
281-299.
- Zhang C., Remarks on some basic hypergeometric series, in Theory and
Applications of Special Functions, Dev. Math., Vol. 13, Springer,
New York, 2005, 479-491.
- Zhang C., Sur les fonctions $q$-Bessel de Jackson, J. Approx.
Theory 122 (2003), 208-223.
- Zhang C., Une sommation discrète pour des équations aux $q$-différences
linéaires et à coefficients analytiques: théorie générale et
exemples, in Differential Equations and the Stokes Phenomenon, World Sci.
Publ., River Edge, NJ, 2002, 309-329.
|
|