|
SIGMA 9 (2013), 070, 12 pages arXiv:1306.4959
https://doi.org/10.3842/SIGMA.2013.070
Ultradiscrete Painlevé VI with Parity Variables
Kouichi Takemura and Terumitsu Tsutsui
Department of Mathematics, Faculty of Science and Technology, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551, Japan
Received July 15, 2013, in final form November 11, 2013; Published online November 19, 2013
Abstract
We introduce a ultradiscretization with parity variables of the q-difference Painlevé VI
system of equations. We show that ultradiscrete limit of Riccati-type solutions of q-Painlevé VI satisfies the
ultradiscrete Painlevé VI system of equations with the parity variables, which is valid by using the
parity variables. We study some solutions of the ultradiscrete Riccati-type equation and those of ultradiscrete Painlevé VI equation.
Key words:
Painlevé equation; ultradiscrete; numerical solutions.
pdf (328 kb)
tex (15 kb)
References
- Bruno A.D., Batkhin A.B. (Editors), Proceedings of the International Conference
"Painlevé equations and related topics" (June, 2011, Saint Petersburg,
Russia), De Gruyter Proceedings in Mathematics, De Gruyter, Berlin, 2012.
- Isojima S., Satsuma J., A class of special solutions for the ultradiscrete
Painlevé II equation, SIGMA 7 (2011), 074, 9 pages,
arXiv:1107.4416.
- Jimbo M., Sakai H., A q-analog of the sixth Painlevé equation,
Lett. Math. Phys. 38 (1996), 145-154,
chao-dyn/9507010.
- Mimura N., Isojima S., Murata M., Satsuma J., Singularity confinement test for
ultradiscrete equations with parity variables, J. Phys. A: Math.
Theor. 42 (2009), 315206, 7 pages.
- Murata M., Exact solutions with two parameters for an ultradiscrete
Painlevé equation of type A6(1), SIGMA 7
(2011), 059, 15 pages, arXiv:1106.3384.
- Ohta Y., Ramani A., Grammaticos B., An affine Weyl group approach to the
eight-parameter discrete Painlevé equation, J. Phys. A: Math.
Gen. 34 (2001), 10523-10532.
- Ormerod C.M., Reductions of lattice mKdV to q-PVI,
Phys. Lett. A 376 (2012), 2855-2859, arXiv:1112.2419.
- Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé
equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
- Sakai H., Casorati determinant solutions for the q-difference sixth
Painlevé equation, Nonlinearity 11 (1998), 823-833.
- Sakai H., Rational surfaces associated with affine root systems and geometry of
the Painlevé equations, Comm. Math. Phys. 220 (2001),
165-229.
- Takahashi D., Tokihiro T., Grammaticos B., Ohta Y., Ramani A., Constructing
solutions to the ultradiscrete Painlevé equations, J. Phys. A:
Math. Gen. 30 (1997), 7953-7966.
- Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., From soliton equations
to integrable cellular automata through a limiting procedure, Phys.
Rev. Lett. 76 (1996), 3247-3250.
- Tsutsui T., Ultradiscretization with parity variables of q-Painlevé VI,
Master's Thesis, Chuo University, 2013 (in Japanese).
|
|