|
SIGMA 9 (2013), 073, 12 pages arXiv:1309.4949
https://doi.org/10.3842/SIGMA.2013.073
Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
Kazuki Maeda and Satoshi Tsujimoto
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
Received September 20, 2013, in final form November 22, 2013; Published online November 26, 2013
Abstract
The spectral transformation technique for symmetric RII polynomials is developed.
Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly
connected with the RII chain.
Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
Key words:
orthogonal polynomials; spectral transformation; RII chain; nonautonomous discrete modified KdV lattice.
pdf (366 kb)
tex (69 kb)
References
- Adler M., Horozov E., van Moerbeke P., The Pfaff lattice and skew-orthogonal
polynomials, Int. Math. Res. Not. 1999 (1999), no. 11,
569-588, solv-int/9903005.
- Adler M., van Moerbeke P., String-orthogonal polynomials, string equations, and
2-Toda symmetries, Comm. Pure Appl. Math. 50 (1997),
241-290, hep-th/9706182.
- Adler M., van Moerbeke P., Toda versus Pfaff lattice and related polynomials,
Duke Math. J. 112 (2002), 1-58.
- Chihara T.S., An introduction to orthogonal polynomials, Mathematics
and its Applications, Vol. 13, Gordon and Breach Science Publishers, New
York, 1978.
- Fernando K.V., Parlett B.N., Accurate singular values and differential qd
algorithms, Numer. Math. 67 (1994), 191-229.
- Grammaticos B., Ramani A., Satsuma J., Willox R., Carstea A.S., Reductions of
integrable lattices, J. Nonlinear Math. Phys. 12 (2005),
suppl. 1, 363-371.
- Hay M., Hietarinta J., Joshi N., Nijhoff F., A Lax pair for a lattice
modified KdV equation, reductions to q-Painlevé equations and
associated Lax pairs, J. Phys. A: Math. Theor. 40 (2007),
F61-F73.
- Ismail M.E.H., Masson D.R., Generalized orthogonality and continued fractions,
J. Approx. Theory 83 (1995), 1-40,
math.CA/9407213.
- Iwasaki M., Nakamura Y., An application of the discrete Lotka-Volterra
system with variable step-size to singular value computation, Inverse
Problems 20 (2004), 553-563.
- Iwasaki M., Nakamura Y., Accurate computation of singular values in terms of
shifted integrable schemes, Japan J. Indust. Appl. Math. 23
(2006), 239-259.
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., 10E9 solution to
the elliptic Painlevé equation, J. Phys. A: Math. Gen.
36 (2003), L263-L272, nlin.SI/0303032.
- Kharchev S., Mironov A., Zhedanov A., Faces of relativistic Toda chain,
Internat. J. Modern Phys. A 12 (1997), 2675-2724,
hep-th/9606144.
- Maeda K., Tsujimoto S., A generalized eigenvalue algorithm for tridiagonal
matrix pencils based on a nonautonomous discrete integrable system,
arXiv:1303.1035.
- Miki H., Goda H., Tsujimoto S., Discrete spectral transformations of skew
orthogonal polynomials and associated discrete integrable systems,
SIGMA 8 (2012), 008, 14 pages, arXiv:1111.7262.
- Miki H., Tsujimoto S., Cauchy biorthogonal polynomials and discrete integrable
systems, J. Nonlinear Syst. Appl. 2 (2011), 195-199.
- Mukaihira A., Nakamura Y., Schur flow for orthogonal polynomials on the unit
circle and its integrable discretization, J. Comput. Appl. Math. 139 (2002), 75-94.
- Mukaihira A., Tsujimoto S., Determinant structure of RI type discrete
integrable system, J. Phys. A: Math. Gen. 37 (2004),
4557-4565.
- Mukaihira A., Tsujimoto S., Determinant structure of non-autonomous Toda-type
integrable systems, J. Phys. A: Math. Gen. 39 (2006),
779-788.
- Noumi M., Tsujimoto S., Yamada Y., Padé interpolation for elliptic Painlevé
equation, in Symmetries, Integrable Systems and Representations,
Springer Proceedings in Mathematics & Statistics, Vol. 40, Editors
K. Iohara, S. Morier-Genoud, B. Rémy, Springer-Verlag, Berlin, 2013,
463-482, arXiv:1204.0294.
- Ormerod C.M., Reductions of lattice mKdV to q-PVI,
Phys. Lett. A 376 (2012), 2855-2859, arXiv:1112.2419.
- Ormerod C.M., Symmetries and special solutions of reductions of the lattice
potential KdV equation, arXiv:1308.4233.
- Ormerod C.M., van der Kamp P.H., Hietarinta J., Quispel G.R.W., Twisted
reductions of integrable lattice equations, and their Lax representations,
arXiv:1307.5208.
- Ormerod C.M., van der Kamp P.H., Quispel G.R.W., Discrete Painlevé
equations and their Lax pairs as reductions of integrable lattice
equations, J. Phys. A: Math. Theor. 46 (2013), 095204,
22 pages, arXiv:1209.4721.
- Papageorgiou V., Grammaticos B., Ramani A., Orthogonal polynomial approach to
discrete Lax pairs for initial-boundary value problems of the QD
algorithm, Lett. Math. Phys. 34 (1995), 91-101.
- Sakai H., Rational surfaces associated with affine root systems and geometry of
the Painlevé equations, Comm. Math. Phys. 220 (2001),
165-229.
- Spiridonov V., Zhedanov A., Discrete Darboux transformations, the
discrete-time Toda lattice, and the Askey-Wilson polynomials,
Methods Appl. Anal. 2 (1995), 369-398.
- Spiridonov V., Zhedanov A., Discrete-time Volterra chain and classical
orthogonal polynomials, J. Phys. A: Math. Gen. 30 (1997),
8727-8737.
- Spiridonov V., Zhedanov A., Spectral transformation chains and some new
biorthogonal rational functions, Comm. Math. Phys. 210
(2000), 49-83.
- Spiridonov V.P., Solitons and Coulomb plasmas, similarity reductions and
special functions, in Special Functions (Hong Kong, 1999), Editors
C. Dunkl, M. Ismail, R. Wong, World Sci. Publ., River Edge, NJ, 2000,
324-338.
- Spiridonov V.P., Tsujimoto S., Zhedanov A.S., Integrable discrete time chains
for the Frobenius-Stickelberger-Thiele polynomials, Comm.
Math. Phys. 272 (2007), 139-165.
- Spiridonov V.P., Zhedanov A.S., To the theory of biorthogonal rational
functions, RIMS Kōkyōuroku 1302 (2003), 172-192.
- Takahashi D., Matsukidaira J., Box and ball system with a carrier and
ultradiscrete modified KdV equation, J. Phys. A: Math. Gen.
30 (1997), L733-L739.
- Tsujimoto S., On the discrete Toda lattice hierarchy and orthogonal
polynomials, RIMS Kōkyōuroku 1280 (2002), 11-18.
- Tsujimoto S., Determinant solutions of the nonautonomous discrete Toda
equation associated with the deautonomized discrete KP hierarchy,
J. Syst. Sci. Complex. 23 (2010), 153-176.
- Tsujimoto S., Kondo K., Molecule solutions to discrete equations and orthogonal
polynomials, RIMS Kōkyōuroku 1170 (2000), 1-8.
- Van Loan C.F., Generalizing the singular value decomposition, SIAM J.
Numer. Anal. 13 (1976), 76-83.
- Vinet L., Zhedanov A., An integrable chain and bi-orthogonal polynomials,
Lett. Math. Phys. 46 (1998), 233-245.
- Zhedanov A., Biorthogonal rational functions and the generalized eigenvalue
problem, J. Approx. Theory 101 (1999), 303-329.
|
|