|
SIGMA 9 (2013), 078, 14 pages arXiv:1309.6464
https://doi.org/10.3842/SIGMA.2013.078
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
Integrable Hierarchy of the Quantum Benjamin-Ono Equation
Maxim Nazarov and Evgeny Sklyanin
Department of Mathematics, University of York, York YO10 5DD, United Kingdom
Received September 26, 2013, in final form December 03, 2013; Published online December 07, 2013
Abstract
A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix.
The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables $x_1,x_2,\ldots$.
This construction provides explicit expressions for the Hamiltonians in terms of the power sum
symmetric functions $p_n=x_1^n+x_2^n+\cdots$ and is based on our recent results from [Comm. Math. Phys. 324 (2013), 831-849].
Key words:
Jack symmetric functions; quantum Benjamin-Ono equation; collective variables.
pdf (395 kb)
tex (19 kb)
References
- Ablowitz M.J., Fokas A.S., Satsuma J., Segur H., On the periodic intermediate
long wave equation, J. Phys. A: Math. Gen. 15 (1982),
781-786.
- Awata H., Matsuo Y., Odake S., Shiraishi J., Collective field theory,
Calogero-Sutherland model and generalized matrix models, Phys.
Lett. B 347 (1995), 49-55, hep-th/9411053.
- Benjamin T.B., Internal waves of permanent form in fluids of great depth,
J. Fluid Mech. 29 (1967), 559-592.
- Cai W., Jing N., Applications of a Laplace-Beltrami operator for Jack
polynomials, European J. Combin. 33 (2012), 556-571,
arXiv:1101.5544.
- Kaup D.J., Lakoba T.I., Matsuno Y., Complete integrability of the
Benjamin-Ono equation by means of action-angle variables, Phys.
Lett. A 238 (1998), 123-133.
- Kaup D.J., Matsuno Y., The inverse scattering transform for the
Benjamin-Ono equation, Stud. Appl. Math. 101 (1998),
73-98.
- Krichever I., Vaninsky K.L., The periodic and open Toda lattice, in Mirror
Symmetry, IV (Montreal, QC, 2000), AMS/IP Stud. Adv. Math.,
Vol. 33, Amer. Math. Soc., Providence, RI, 2002, 139-158,
hep-th/0010184.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1995.
- Nazarov M.L., Sklyanin E.K., Sekiguchi-Debiard operators at infinity,
Comm. Math. Phys. 324 (2013), 831-849, arXiv:1212.2781.
- Nazarov M.L., Sklyanin E.K., Macdonald operators at infinity,
J. Algebr. Comb. (2013), arXiv:1212.2960.
- Okounkov A., Pandharipande R., Quantum cohomology of the Hilbert scheme of
points in the plane, Invent. Math. 179 (2010), 523-557,
math.AG/0411210.
- Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc.
Japan 39 (1975), 1082-1091.
- Polychronakos A.P., Waves and solitons in the continuum limit of the
Calogero-Sutherland model, Phys. Rev. Lett. 74 (1995),
5153-5157, hep-th/9411054.
- Schiffmann O., Vasserot E., Cherednik algebras, $W$-algebras and the
equivariant cohomology of the moduli space of instantons on ${\mathbb A}^2$,
Publ. Math. IHÉS 118 (2013), 213-342,
arXiv:1202.2756.
- Shiraishi J., A family of integral transformations and basic hypergeometric
series, Comm. Math. Phys. 263 (2006), 439-460.
- Sklyanin E.K., Bispectrality for the quantum open Toda chain,
J. Phys. A: Math. Theor. 46 (2013), 382001, 9 pages,
arXiv:1306.0454.
- Stembridge J., Maple packages for symmetric functions, posets, root systems,
and finite Coxeter groups, available at
http://www.math.lsa.umich.edu/~jrs/maple.html\#SF.
- Takasaki K., Integrable systems whose spectral curves are the graph of a
function, in Superintegrability in Classical and Quantum Systems, CRM
Proc. Lecture Notes, Vol. 37, Amer. Math. Soc., Providence, RI, 2004,
211-222, nlin.SI/0211021.
- Ujino H., Wadati M., Hikami K., The quantum Calogero-Moser model:
algebraic structures, J. Phys. Soc. Japan 62 (1993),
3035-3043.
- Vaninsky K.L., On explicit parametrisation of spectral curves for
Moser-Calogero particles and its applications, Int. Math. Res.
Not. 1999 (1999), 509-529, solv-int/9808018.
|
|