|
SIGMA 10 (2014), 002, 19 pages arXiv:1308.4233
https://doi.org/10.3842/SIGMA.2014.002
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
Christopher M. Ormerod
Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
Received September 19, 2013, in final form December 28, 2013; Published online January 03, 2014
Abstract
We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with $E_6^{(1)}$ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.
Key words:
difference equations; integrability; reduction; isomonodromy.
pdf (451 kb)
tex (60 kb)
References
- Ablowitz M.J., Segur H., Exact linearization of a Painlevé transcendent,
Phys. Rev. Lett. 38 (1977), 1103-1106.
- Arinkin D., Borodin A., Moduli spaces of $d$-connections and difference
Painlevé equations, Duke Math. J. 134 (2006), 515-556,
math.AG/0411584.
- Birkhoff G.D., General theory of linear difference equations, Trans.
Amer. Math. Soc. 12 (1911), 243-284.
- Boll R., Classification of 3D consistent quad-equations, J. Nonlinear
Math. Phys. 18 (2011), 337-365, arXiv:1009.4007.
- Borodin A., Isomonodromy transformations of linear systems of difference
equations, Ann. of Math. 160 (2004), 1141-1182,
math.CA/0209144.
- Clarkson P.A., Painlevé equations - nonlinear special functions, in
Orthogonal Polynomials and Special Functions, Lecture Notes in
Math., Vol. 1883, Springer, Berlin, 2006, 331-411.
- Clarkson P.A., Kruskal M.D., New similarity reductions of the Boussinesq
equation, J. Math. Phys. 30 (1989), 2201-2213.
- Doliwa A., Non-commutative lattice-modified Gel'fand-Dikii systems,
J. Phys. A: Math. Theor. 46 (2013), 205202, 14 pages,
arXiv:1302.5594.
- Dzhamay A., Sakai H., Takenawa T., Discrete Hamiltonian structure of
Schlesinger transformations, arXiv:1302.2972.
- Flaschka H., Newell A.C., Monodromy- and spectrum-preserving deformations. I,
Comm. Math. Phys. 76 (1980), 65-116.
- Hay M., Hierarchies of nonlinear integrable $q$-difference equations from
series of Lax pairs, J. Phys. A: Math. Theor. 40 (2007),
10457-10471.
- Hay M., Hietarinta J., Joshi N., Nijhoff F.W., A Lax pair for a lattice
modified KdV equation, reductions to $q$-Painlevé equations and
associated Lax pairs, J. Phys. A: Math. Theor. 40 (2007),
F61-F73.
- Hay M., Howes P., Shi Y., A systematic approach to reductions of type-Q ABS
equations, arXiv:1307.3390.
- Hay M., Kajiwara K., Masuda T., Bilinearization and special solutions to the
discrete Schwarzian KdV equation, J. Math-for-Ind. 3A
(2011), 53-62, arXiv:1102.1829.
- Hone A.N.W., van der Kamp P.H., Quispel G.R.W., Tran D.T., Integrability of
reductions of the discrete Korteweg-de Vries and potential
Korteweg-de Vries equations, Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 469 (2013), 20120747, 23 pages, arXiv:1211.6958.
- Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary
differential equations with rational coefficients. II, Phys. D
2 (1981), 407-448.
- Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation,
Lett. Math. Phys. 38 (1996), 145-154,
chao-dyn/9507010.
- Kajiwara K., The hypergeometric solutions of the additive Painlevé
equations with $E$-type affine Weyl symmetry, Reports of RIAM Symposium
No. 19ME-S2 (in Japanese).
- Kajiwara K., Kimura K., On a $q$-difference Painlevé III equation.
I. Derivation, symmetry and Riccati type solutions,
J. Nonlinear Math. Phys. 10 (2003), 86-102,
nlin.SI/0205019.
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., ${}_{10}E_9$ solution
to the elliptic Painlevé equation, J. Phys. A: Math. Gen.
36 (2003), L263-L272, nlin.SI/0303032.
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Construction of
hypergeometric solutions to the $q$-Painlevé equations, Int.
Math. Res. Not. 2005 (2005), 1441-1463, nlin.SI/0501051.
- Kajiwara K., Noumi M., Yamada Y., A study on the fourth $q$-Painlevé
equation, J. Phys. A: Math. Gen. 34 (2001), 8563-8581,
nlin.SI/0012063.
- Kruskal M.D., Tamizhmani K.M., Grammaticos B., Ramani A., Asymmetric discrete
Painlevé equations, Regul. Chaotic Dyn. 5 (2000),
273-280.
- Murata M., New expressions for discrete Painlevé equations,
Funkcial. Ekvac. 47 (2004), 291-305,
nlin.SI/0304001.
- Murata M., Lax forms of the $q$-Painlevé equations, J. Phys. A:
Math. Theor. 42 (2009), 115201, 17 pages, arXiv:0810.0058.
- Murata M., Sakai H., Yoneda J., Riccati solutions of discrete Painlevé
equations with Weyl group symmetry of type $E^{(1)}_8$, J. Math.
Phys. 44 (2003), 1396-1414, nlin.SI/0210040.
- Nijhoff F., Capel H., The discrete Korteweg-de Vries equation,
Acta Appl. Math. 39 (1995), 133-158.
- Nijhoff F., Hone A., Joshi N., On a Schwarzian PDE associated with the
KdV hierarchy, Phys. Lett. A 267 (2000), 147-156,
solv-int/9909026.
- Nijhoff F., Joshi N., Hone A., On the discrete and continuous Miura chain
associated with the sixth Painlevé equation, Phys. Lett. A
264 (2000), 396-406, solv-int/9906006.
- Nijhoff F.W., Papageorgiou V.G., Similarity reductions of integrable lattices
and discrete analogues of the Painlevé II equation, Phys.
Lett. A 153 (1991), 337-344.
- Nijhoff F.W., Quispel G.R.W., Capel H.W., Direct linearization of nonlinear
difference-difference equations, Phys. Lett. A 97 (1983),
125-128.
- Nijhoff F.W., Ramani A., Grammaticos B., Ohta Y., On discrete Painlevé
equations associated with the lattice KdV systems and the
Painlevé VI equation, Stud. Appl. Math. 106 (2001),
261-314, solv-int/9812011.
- Nijhoff F.W., Walker A.J., The discrete and continuous Painlevé VI
hierarchy and the Garnier systems, Glasg. Math. J. 43A
(2001), 109-123, nlin.SI/0001054.
- Noumi M., Special functions arising from discrete Painlevé equations: a
survey, J. Comput. Appl. Math. 202 (2007), 48-55.
- Ormerod C.M., The lattice structure of connection preserving deformations for
$q$-Painlevé equations I, SIGMA 7 (2011), 045,
22 pages, arXiv:1010.3036.
- Ormerod C.M., A study of the associated linear problem for $q$-${\rm P}_{\rm V}$, J. Phys. A: Math. Theor. 44 (2011), 025201, 26 pages,
arXiv:0911.5552.
- Ormerod C.M., Reductions of lattice mKdV to $q$-${\rm P}_{\rm VI}$,
Phys. Lett. A 376 (2012), 2855-2859, arXiv:1112.2419.
- Ormerod C.M., van der Kamp P.H., Hietarinta J., Quispel G.R.W., Twisted
reductions of integrable lattice equations, and their Lax representations,
arXiv:1307.5208.
- Ormerod C.M., van der Kamp P.H., Quispel G.R.W., Discrete Painlevé
equations and their Lax pairs as reductions of integrable lattice
equations, J. Phys. A: Math. Theor. 46 (2013), 095204,
22 pages, arXiv:1209.4721.
- Ormerod C.M., Witte N.S., Forrester P.J., Connection preserving deformations
and $q$-semi-classical orthogonal polynomials, Nonlinearity
24 (2011), 2405-2434, arXiv:0906.0640.
- Papageorgiou V.G., Nijhoff F.W., Capel H.W., Integrable mappings and nonlinear
integrable lattice equations, Phys. Lett. A 147 (1990),
106-114.
- Papageorgiou V.G., Nijhoff F.W., Grammaticos B., Ramani A., Isomonodromic
deformation problems for discrete analogues of Painlevé equations,
Phys. Lett. A 164 (1992), 57-64.
- Praagman C., Fundamental solutions for meromorphic linear difference equations
in the complex plane, and related problems, J. Reine Angew. Math.
369 (1986), 101-109.
- Rains E.M., An isomonodromy interpretation of the hypergeometric solution of
the elliptic Painlevé equation (and generalizations), SIGMA
7 (2011), 088, 24 pages, arXiv:0807.0258.
- Ramani A., Carstea A.S., Grammaticos B., On the non-autonomous form of the
$Q_4$ mapping and its relation to elliptic Painlevé equations,
J. Phys. A: Math. Theor. 42 (2009), 322003, 8 pages.
- Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function
solutions of the discrete Painlevé equations, Comput. Math.
Appl. 42 (2001), 603-614.
- Sakai H., Rational surfaces associated with affine root systems and geometry of
the Painlevé equations, Comm. Math. Phys. 220 (2001),
165-229.
- Sakai H., Hypergeometric solution of $q$-Schlesinger system of rank two,
Lett. Math. Phys. 73 (2005), 237-247.
- Sakai H., Lax form of the $q$-Painlevé equation associated with the
$A^{(1)}_2$ surface, J. Phys. A: Math. Gen. 39 (2006),
12203-12210.
- Tran D.T., van der Kamp P.H., Quispel G.R.W., Involutivity of integrals of
sine-Gordon, modified KdV and potential KdV maps,
J. Phys. A: Math. Theor. 44 (2011), 295206, 13 pages,
arXiv:1010.3471.
- van der Kamp P.H., Quispel G.R.W., The staircase method: integrals for periodic
reductions of integrable lattice equations, J. Phys. A: Math. Theor.
43 (2010), 465207, 34 pages, arXiv:1005.2071.
- Witte N.S., The correspondence between the Askey table of orthogonal
polynomial systems and the Sakai scheme of discrete Painlevé equations,
in preparation.
- Witte N.S., Ormerod C.M., Construction of a Lax pair for the $E_6^{(1)}$
$q$-Painlevé system, SIGMA 8 (2012), 097, 27 pages,
arXiv:1207.0041.
- Yamada Y., Padé method to Painlevé equations, Funkcial. Ekvac.
52 (2009), 83-92.
- Yamada Y., Lax formalism for $q$-Painlevé equations with affine Weyl
group symmetry of type $E^{(1)}_n$, Int. Math. Res. Not.
2011 (2011), 3823-3838, arXiv:1004.1687.
|
|