|
SIGMA 10 (2014), 003, 10 pages arXiv:1304.6550
https://doi.org/10.3842/SIGMA.2014.003
Global Embedding of the Reissner-Nordström Metric in the Flat Ambient Space
Sergey A. Paston and Anton A. Sheykin
Saint Petersburg State University, St. Petersburg, Russia
Received November 22, 2013, in final form January 03, 2014; Published online January 07, 2014
Abstract
We study isometric embeddings of non-extremal Reissner-Nordström metric describing a charged black hole. We obtain three new embeddings in the flat ambient space with minimal possible dimension. These embeddings are global, i.e. corresponding surfaces are smooth at all values of radius, including horizons.
Each of the given embeddings covers one instance of the regions outside the horizon, one instance between the horizons and one instance inside the internal horizon.
The lines of time for these embeddings turn out to be more complicated than circles or hyperbolas.
Key words:
isometric embedding; global embedding Minkowski space; GEMS; Reissner-Nordström metric; charged black hole.
pdf (373 kb)
tex (22 kb)
References
- Bandos I.A., String-like description of gravity and possible applications for
F-theory, Modern Phys. Lett. A 12 (1997), 799-810,
hep-th/9608093.
- Banerjee R., Majhi B.R., A new global embedding approach to study Hawking and
Unruh effects, Phys. Lett. B 690 (2010), 83-86,
arXiv:1002.0985.
- Chen H.Z., Tian Y., Note on the generalization of the global embedding
Minkowski spacetime approach, Phys. Rev. D 71 (2005),
024012, 4 pages, gr-qc/0410077.
- Collinson C.D., Embeddings of the plane-fronted waves and other space-time,
J. Math. Phys. 9 (1968), 403-410.
- Deser S., Levin O., Accelerated detectors and temperature in (anti-) de
Sitter spaces, Classical Quantum Gravity 14 (1997),
L163-L168, gr-qc/9706018.
- Deser S., Levin O., Equivalence of Hawking and Unruh temperatures and
entropies through flat space embeddings, Classical Quantum Gravity
15 (1998), L85-L87, hep-th/9806223.
- Deser S., Levin O., Mapping Hawking into Unruh thermal properties,
Phys. Rev. D 59 (1999), 064004, 7 pages,
hep-th/9809159.
- Deser S., Pirani F.A.E., Robinson D.C., New embedding model of general
relativity, Phys. Rev. D 14 (1976), 3301-3303.
- Ferraris M., Francaviglia M., Algebraic isometric embeddings of charged
spherically symmetric space-times, Gen. Relativity Gravitation
12 (1980), 791-804.
- Fronsdal C., Completion and embedding of the Schwarzschild solution,
Phys. Rev. 116 (1959), 778-781.
- Fujitani T., Ikeda M., Matsumoto M., On the imbedding of the Schwarzschild
space-time. I, J. Math. Kyoto Univ. 1 (1961), 43-61.
- Giblin Jr. J.T., Marolf D., Garvey R., Spacetime embedding diagrams for
spherically symmetric black holes, Gen. Relativity Gravitation
36 (2004), 83-99, gr-qc/0305102.
- Goenner H.F., Local isometric embedding of Riemannian manifolds and
Einstein's theory of gravitation, in General Relativity and Gravitation,
Vol. 1, Plenum, New York, 1980, 441-468.
- Griffiths J.B., Podolský J., Exact space-times in Einstein's general
relativity, Cambridge Monographs on Mathematical Physics, Cambridge
University Press, Cambridge, 2009.
- Hong S.T., Complete higher dimensional global embedding structures of various
black holes, Gen. Relativity Gravitation 36 (2004),
1919-1929, gr-qc/0310118.
- Jacob U., Piran T., Embedding the Reissner-Nordström spacetime in
Euclidean and Minkowski spaces, Classical Quantum Gravity
23 (2006), 4035-4045, gr-qc/0605104.
- Karasik D., Davidson A., Geodetic brane gravity, Phys. Rev. D
67 (2003), 064012, 17 pages, gr-qc/0207061.
- Kasner E., Finite representation of the solar gravitational field in flat space
of six dimensions, Amer. J. Math. 43 (1921), 130-133.
- Maia M.D., On the integrability conditions for extended objects,
Classical Quantum Gravity 6 (1989), 173-183.
- Pandey S.N., Kansal I.D., Impossibility of class one electromagnetic fields,
Math. Proc. Cambridge Phil. Soc. 66 (1969), 153-154.
- Paranjape A., Dadhich N., Embedding diagrams for the Reissner-Nordström
spacetime, Gen. Relativity Gravitation 36 (2004),
1189-1195, gr-qc/0307056.
- Paston S.A., Gravity as a field theory in flat space-time, Theoret. and
Math. Phys. 169 (2011), 1611-1619, arXiv:1111.1104.
- Paston S.A., Franke V.A., Canonical formulation of the embedded theory of
gravity that is equivalent to Einstein's general relativity,
Theoret. and Math. Phys. 153 (2007), 1582-1596,
arXiv:0711.0576.
- Paston S.A., Semenova A.N., Constraint algebra for Regge-Teitelboim
formulation of gravity, Internat. J. Theoret. Phys. 49
(2010), 2648-2658, arXiv:1003.0172.
- Paston S.A., Sheykin A.A., Embeddings for the Schwarzschild metric:
classification and new results, Classical Quantum Gravity
29 (2012), 095022, 17 pages, arXiv:1202.1204.
- Paston S.A., Sheykin A.A., From the embedding theory to general relativity in a
result of inflation, Internat. J. Modern Phys. D 21 (2012),
1250043, 19 pages, arXiv:1106.5212.
- Pavšič M., Classical theory of a space-time sheet, Phys.
Lett. A 107 (1985), 66-70.
- Pavšič M., Tapia V., Resource letter on geometrical results for
embeddings and branes, gr-qc/0010045.
- Płazowski J., The imbedding method of finding the maximal extensions of
solutions of Einstein field equations, Acta Phys. Polon. B
4 (1973), 49-63.
- Regge T., Teitelboim C., General relativity à la string: a progress report,
in Proceedings of the First Marcel Grossmann Meeting on General Relativity
(Trieste, Italy, 1975), Editor R. Ruffini, North-Holland Publishing Company,
1977, 77-88.
- Rosen J., Embedding of the Schwarzschild and Reissner-Weyl solutions,
Nuovo Cimento 38 (1965), 631-633.
- Rosen J., Embedding of various relativistic Riemannian spaces in
pseudo-Euclidean spaces, Rev. Modern Phys. 37 (1965),
204-214.
- Santos N.L., Dias Ó.J.C., Lemos J.P.S., Global embedding of
D-dimensional black holes with a cosmological constant in Minkowskian
spacetimes: matching between Hawking temperature and Unruh temperature,
Phys. Rev. D 70 (2004), 124033, 7 pages,
hep-th/0412076.
- Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions
of Einstein's field equations, 2nd ed., Cambridge Monographs on
Mathematical Physics, Cambridge University Press, Cambridge, 2003.
- Tapia V., Gravitation à la string, Classical Quantum Gravity
6 (1989), L49-L56.
|
|