|
SIGMA 10 (2014), 022, 26 pages arXiv:1308.3871
https://doi.org/10.3842/SIGMA.2014.022
The Real $K$-Theory of Compact Lie Groups
Chi-Kwong Fok
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
Received August 22, 2013, in final form March 06, 2014; Published online March 11, 2014
Abstract
Let $G$ be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution $\sigma_G$
and viewed as a $G$-space with the conjugation action.
In this paper, we present a description of the ring structure of the (equivariant) $KR$-theory of $(G, \sigma_G)$ by
drawing on previous results on the module structure of the $KR$-theory and the ring structure of the equivariant
$K$-theory.
Key words:
$KR$-theory; compact Lie groups; Real representations; Real equivariant formality.
pdf (531 kb)
tex (30 kb)
References
- Atiyah M.F., On the $K$-theory of compact Lie groups, Topology
4 (1965), 95-99.
- Atiyah M.F., $K$-theory and reality, Quart. J. Math. Oxford Ser. (2)
17 (1966), 367-386.
- Atiyah M.F., $K$-theory, W.A. Benjamin, Inc., New York - Amsterdam, 1967.
- Atiyah M.F., Bott periodicity and the index of elliptic operators,
Quart. J. Math. Oxford Ser. (2) 19 (1968), 113-140.
- Atiyah M.F., Segal G.B., Equivariant $K$-theory and completion,
J. Differential Geometry 3 (1969), 1-18.
- Bourbaki N., Lie groups and Lie algebras, Chapters 7-9, Elements of
Mathematics (Berlin), Springer-Verlag, Berlin, 2005.
- Bousfield A.K., On the 2-adic $K$-localizations of $H$-spaces,
Homology, Homotopy Appl. 9 (2007), 331-366.
- Bröcker T., tom Dieck T., Representations of compact Lie groups,
Graduate Texts in Mathematics, Vol. 98, Springer-Verlag, New York,
1985.
- Brylinski J.L., Zhang B., Equivariant $K$-theory of compact connected Lie
groups, K-Theory 20 (2000), 23-36,
dg-ga/9710035.
- Fulton W., Harris J., Representation theory, Graduate Texts in
Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
- Harada M., Landweber G.D., Surjectivity for Hamiltonian $G$-spaces in
$K$-theory, Trans. Amer. Math. Soc. 359 (2007),
6001-6025, math.SG/0503609.
- Harada M., Landweber G.D., Sjamaar R., Divided differences and the Weyl
character formula in equivariant $K$-theory, Math. Res. Lett.
17 (2010), 507-527, arXiv:0906.1629.
- Hodgkin L., On the $K$-theory of Lie groups, Topology 6
(1967), 1-36.
- Pittie H.V., Homogeneous vector bundles on homogeneous spaces,
Topology 11 (1972), 199-203.
- Seymour R.M., The real $K$-theory of Lie groups and homogeneous spaces,
Quart. J. Math. Oxford Ser. (2) 24 (1973), 7-30.
|
|