|
SIGMA 10 (2014), 047, 20 pages arXiv:1310.5321
https://doi.org/10.3842/SIGMA.2014.047
Contribution to the Special Issue on New Directions in Lie Theory
Graded Limits of Minimal Affinizations in Type D
Katsuyuki Naoi
Institute of Engineering, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo, Japan
Received October 30, 2013, in final form April 14, 2014; Published online April 20, 2014
Abstract
We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular
case.
We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their
defining relations.
As a corollary we obtain a character formula for the minimal affinizations in terms of Demazure operators, and
a multiplicity formula for a special class of the minimal affinizations.
Key words:
minimal affinizations; quantum affine algebras; current algebras.
pdf (481 kb)
tex (27 kb)
References
- Chari V., Minimal affinizations of representations of quantum groups: the rank
2 case, Publ. Res. Inst. Math. Sci. 31 (1995),
873-911, hep-th/9410022.
- Chari V., On the fermionic formula and the Kirillov-Reshetikhin
conjecture, Int. Math. Res. Not. 2001 (2001), 629-654,
math.QA/0006090.
- Chari V., Braid group actions and tensor products, Int. Math. Res.
Not. 2002 (2002), 357-382, math.QA/0106241.
- Chari V., Greenstein J., Minimal affinizations as projective objects,
J. Geom. Phys. 61 (2011), 594-609, arXiv:1009.4494.
- Chari V., Moura A., The restricted Kirillov-Reshetikhin modules for the
current and twisted current algebras, Comm. Math. Phys. 266
(2006), 431-454, math.RT/0507584.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
Cambridge, 1994.
- Chari V., Pressley A., Minimal affinizations of representations of quantum
groups: the nonsimply-laced case, Lett. Math. Phys. 35
(1995), 99-114.
- Chari V., Pressley A., Quantum affine algebras and their representations, in
Representations of Groups (Banff, AB, 1994), CMS Conf. Proc.,
Vol. 16, Amer. Math. Soc., Providence, RI, 1995, 59-78,
hep-th/9411145.
- Chari V., Pressley A., Minimal affinizations of representations of quantum
groups: the irregular case, Lett. Math. Phys. 36 (1996),
247-266.
- Chari V., Pressley A., Minimal affinizations of representations of quantum
groups: the simply laced case, J. Algebra 184 (1996),
1-30, hep-th/9410036.
- Fourier G., Littelmann P., Tensor product structure of affine Demazure
modules and limit constructions, Nagoya Math. J. 182
(2006), 171-198, math.RT/0412432.
- Hernandez D., On minimal affinizations of representations of quantum groups,
Comm. Math. Phys. 276 (2007), 221-259,
math.QA/0607527.
- Hernandez D., Leclerc B., Cluster algebras and quantum affine algebras,
Duke Math. J. 154 (2010), 265-341, arXiv:0903.1452.
- Joseph A., On the Demazure character formula, Ann. Sci. École Norm.
Sup. (4) 18 (1985), 389-419.
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University
Press, Cambridge, 1990.
- Lakshmibai V., Littelmann P., Magyar P., Standard monomial theory for
Bott-Samelson varieties, Compositio Math. 130 (2002),
293-318, alg-geom/9703020.
- Lusztig G., Introduction to quantum groups, Progress in Mathematics,
Vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
- Moura A., Restricted limits of minimal affinizations, Pacific J. Math.
244 (2010), 359-397, arXiv:0812.2238.
- Mukhin E., Young C.A.S., Affinization of category O for quantum
groups, Trans. Amer. Math. Soc., to appear, arXiv:1204.2769.
- Naoi K., Weyl modules, Demazure modules and finite crystals for non-simply
laced type, Adv. Math. 229 (2012), 875-934,
arXiv:1012.5480.
- Naoi K., Demazure modules and graded limits of minimal affinizations,
Represent. Theory 17 (2013), 524-556, arXiv:1210.0175.
- Sam S.V., Jacobi-Trudi determinants and characters of minimal affinizations,
Pacific J. Math., to appear, arXiv:1307.6630.
|
|