|
SIGMA 10 (2014), 048, 11 pages arXiv:1310.1688
https://doi.org/10.3842/SIGMA.2014.048
Multi-Hamiltonian Structures on Spaces of Closed Equicentroaffine Plane Curves Associated to Higher KdV Flows
Atsushi Fujioka a and Takashi Kurose b
a) Department of Mathematics, Kansai University, Suita, 564-8680, Japan
b) Department of Mathematical Sciences, Kwansei Gakuin University, Sanda, 669-1337, Japan
Received October 11, 2013, in final form April 16, 2014; Published online April 22, 2014
Abstract
Higher KdV flows on spaces of closed equicentroaffine plane curves are studied and it is shown that the flows
are described as certain multi-Hamiltonian systems on the spaces.
Multi-Hamiltonian systems describing higher mKdV flows are also given on spaces of closed Euclidean plane curves via the
geometric Miura transformation.
Key words:
motions of curves; equicentroaffine curves; KdV hierarchy; multi-Hamiltonian systems.
pdf (327 kb)
tex (17 kb)
References
- Anco S.C., Bi-Hamiltonian operators, integrable flows of curves using moving
frames and geometric map equations, J. Phys. A: Math. Gen.
39 (2006), 2043-2072, nlin.SI/0512051.
- Anco S.C., Hamiltonian flows of curves in $G/{\rm SO}(N)$ and vector soliton
equations of mKdV and sine-Gordon type, SIGMA 2
(2006), 044, 18 pages, nlin.SI/0512046.
- Anco S.C., Group-invariant soliton equations and bi-Hamiltonian geometric
curve flows in Riemannian symmetric spaces, J. Geom. Phys.
58 (2008), 1-37, nlin.SI/0703041.
- Anco S.C., Hamiltonian curve flows in Lie groups $G\subset {\rm U}(N)$ and
vector NLS, mKdV, sine-Gordon soliton equations, in Symmetries and
Overdetermined Systems of Partial Differential Equations, IMA Vol.
Math. Appl., Vol. 144, Springer, New York, 2008, 223-250,
nlin.SI/0610075.
- Anco S.C., Asadi E., Quaternionic soliton equations from Hamiltonian curve
flows in ${\mathbb{HP}}^n$, J. Phys. A: Math. Theor. 42
(2009), 485201, 25 pages, arXiv:0905.4215.
- Anco S.C., Asadi E., Symplectically invariant soliton equations from
non-stretching geometric curve flows, J. Phys. A: Math. Theor.
45 (2012), 475207, 37 pages, arXiv:1206.4040.
- Anco S.C., Myrzakulov R., Integrable generalizations of Schrödinger maps
and Heisenberg spin models from Hamiltonian flows of curves and surfaces,
J. Geom. Phys. 60 (2010), 1576-1603, arXiv:0806.1360.
- Anco S.C., Vacaru S.I., Curve flows in Lagrange-Finsler geometry,
bi-Hamiltonian structures and solitons, J. Geom. Phys. 59
(2009), 79-103, math-ph/0609070.
- Calini A., Ivey T., Marí-Beffa G., Remarks on KdV-type flows on
star-shaped curves, Phys. D 238 (2009), 788-797,
arXiv:0808.3593.
- Chou K.-S., Qu C., The KdV equation and motion of plane curves,
J. Phys. Soc. Japan 70 (2001), 1912-1916.
- Chou K.-S., Qu C., Integrable equations arising from motions of plane curves,
Phys. D 162 (2002), 9-33.
- Chou K.-S., Qu C., Integrable motions of space curves in affine geometry,
Chaos Solitons Fractals 14 (2002), 29-44.
- Fujioka A., Kurose T., Motions of curves in the complex hyperbola and the
Burgers hierarchy, Osaka J. Math. 45 (2008), 1057-1065.
- Fujioka A., Kurose T., Geometry of the space of closed curves in the complex
hyperbola, Kyushu J. Math. 63 (2009), 161-165.
- Fujioka A., Kurose T., Hamiltonian formalism for the higher KdV flows on
the space of closed complex equicentroaffine curves, Int. J. Geom.
Methods Mod. Phys. 7 (2010), 165-175.
- Hasimoto H., A soliton on a vortex filament, J. Fluid Mech.
51 (1972), 477-485.
- Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries
equation and generalizations. V. Uniqueness and nonexistence of
polynomial conservation laws, J. Math. Phys. 11 (1970),
952-960.
- Kulish P.P., Reiman A.G., Hierarchy of symplectic forms for the Schrödinger
equation and for the Dirac equation on a line, J. Sov. Math.
22 (1983), 1627-1637.
- Lamb Jr. G.L., Solitons and the motion of helical curves, Phys. Rev.
Lett. 37 (1976), 235-237.
- Lax P.D., Integrals of nonlinear equations of evolution and solitary waves,
Comm. Pure Appl. Math. 21 (1968), 467-490.
- Liu Y., Qu C., Zhang Y., Stability of periodic peakons for the modified
$\mu$-Camassa-Holm equation, Phys. D 250 (2013),
66-74.
- Magri F., A simple model of the integrable Hamiltonian equation,
J. Math. Phys. 19 (1978), 1156-1162.
- Marí Beffa G., Geometric realizations of bi-Hamiltonian completely
integrable systems, SIGMA 4 (2008), 034, 23 pages,
arXiv:0803.3866.
- Marí Beffa G., Sanders J.A., Wang J.P., Integrable systems in
three-dimensional Riemannian geometry, J. Nonlinear Sci.
12 (2002), 143-167.
- Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and
generalizations. II. Existence of conservation laws and constants of
motion, J. Math. Phys. 9 (1968), 1204-1209.
- Newell A.C., Solitons in mathematics and physics, CBMS-NSF Regional
Conference Series in Applied Mathematics, Vol. 48, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1985.
- Olver P.J., Applications of Lie groups to differential equations,
Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York,
1986.
- Pinkall U., Hamiltonian flows on the space of star-shaped curves,
Results Math. 27 (1995), 328-332.
- Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and
modern applications in soliton theory, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge, 2002.
- Sanders J.A., Wang J.P., Integrable systems in $n$-dimensional Riemannian
geometry, Mosc. Math. J. 3 (2003), 1369-1393,
math.AP/0301212.
- Squires S.A., Marí Beffa G., Integrable systems associated to curves in flat
Galilean and Minkowski spaces, Appl. Anal. 89 (2010),
571-592.
- Terng C.-L., Thorbergsson G., Completely integrable curve flows on adjoint
orbits, Results Math. 40 (2001), 286-309,
math.DG/0108154.
|
|