Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 050, 24 pages      arXiv:1207.4023      https://doi.org/10.3842/SIGMA.2014.050

Geometric Aspects of the Painlevé Equations PIII(D6) and PIII(D7)

Marius van der Put and Jaap Top
Johann Bernoulli Institute, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Received October 15, 2013, in final form April 10, 2014; Published online April 23, 2014

Abstract
The Riemann-Hilbert approach for the equations PIII(D6) and PIII(D7) is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto-Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations.

Key words: moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations.

pdf (515 kb)   tex (34 kb)

References

  1. Inaba M., Saito M.-H., Moduli of unramified irregular singular parabolic connections on a smooth projective curve, Kyoto J. Math. 53 (2013), 433-482, arXiv:1203.0084.
  2. Kaneko K., Ohyama Y., Meromorphic Painlevé transcendents at a fixed singularity, Math. Nachr. 286 (2013), 861-875.
  3. Kaup L., Kaup B., Holomorphic functions of several variables. An introduction to the fundamental theory, de Gruyter Studies in Mathematics, Vol. 3, Walter de Gruyter & Co., Berlin, 1983.
  4. Milne A.E., Clarkson P.A., Bassom A.P., Bäcklund transformations and solution hierarchies for the third Painlevé equation, Stud. Appl. Math. 98 (1997), 139-194.
  5. Ohyama Y., Rational transformations of confluent hypergeometric equations and algebraic solutions of the Painlevé equations: P1 to P5, in Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and their Deformations. Painlevé Hierarchies, RIMS Kôkyûroku Bessatsu, Vol. B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 137-150.
  6. Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.
  7. Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé equation PIII, Funkcial. Ekvac. 30 (1987), 305-332.
  8. van der Put M., Families of linear differential equations related to the second Painlevé equation, in Algebraic Methods in Dynamical Systems, Banach Center Publ., Vol. 94, Polish Acad. Sci. Inst. Math., Warsaw, 2011, 247-262.
  9. van der Put M., Families of linear differential equations and the Painlevé equations, in Geometric and Differential Galois Theories, Sémin. Congr., Vol. 27, Soc. Math. France, Paris, 2012, 203-220.
  10. van der Put M., Saito M.-H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611-2667, arXiv:0902.1702.
  11. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
  12. van der Put M., Top J., A Riemann-Hilbert approach to Painlevé IV, J. Nonlinear Math. Phys. 20 (2013), suppl. 1, 165-177, arXiv:1207.4335.
  13. Witte N.S., New transformations for Painlevé's third transcendent, Proc. Amer. Math. Soc. 132 (2004), 1649-1658, math.CA/0210019.


Previous article  Next article   Contents of Volume 10 (2014)