Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 051, 28 pages      arXiv:1207.4712      https://doi.org/10.3842/SIGMA.2014.051
Contribution to the Special Issue on Progress in Twistor Theory

Gravity in Twistor Space and its Grassmannian Formulation

Freddy Cachazo a, Lionel Mason b and David Skinner c
a) Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, Ontario N2L 2Y5, Canada
b) The Mathematical Institute, 24-29 St. Giles', Oxford OX1 3LB, UK
c) DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

Received November 21, 2013, in final form April 23, 2014; Published online May 01, 2014

Abstract
We prove the formula for the complete tree-level $S$-matrix of $\mathcal{N}=8$ supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic $1/z^2$ behavior of gravity. In addition, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian. The Grassmannian formulation has a very simple structure; in the N$^{k-2}$MHV sector the integrand is essentially the product of that of an MHV and an $\overline{{\rm MHV}}$ amplitude, with $k+1$ and $n-k-1$ particles respectively.

Key words: twistor theory; scattering amplitudes; gravity.

pdf (570 kb)   tex (47 kb)

References

  1. Arkani-Hamed N., Bourjaily J., Cachazo F., Caron-Huot S., Trnka J., The all-loop integrand for scattering amplitudes in planar ${\mathcal N}=4$ SYM, J. High Energy Phys. 2011 (2011), no. 1, 041, 46 pages, arXiv:1008.2958.
  2. Arkani-Hamed N., Bourjaily J., Cachazo F., Trnka J., Unification of residues and Grassmannian dualities, J. High Energy Phys. 2011 (2011), no. 1, 049, 45 pages, arXiv:0912.4912.
  3. Arkani-Hamed N., Cachazo F., Cheung C., Kaplan J., A duality for the $S$ matrix, J. High Energy Phys. 2010 (2010), no. 3, 020, 69 pages, arXiv:0907.5418.
  4. Arkani-Hamed N., Cachazo F., Cheung C., Kaplan J., The $S$-matrix in twistor space, J. High Energy Phys. 2010 (2010), no. 3, 110, 47 pages, arXiv:0903.2110.
  5. Arkani-Hamed N., Cachazo F., Kaplan J., What is the simplest quantum field theory?, J. High Energy Phys. 2010 (2010), no. 9, 016, 90 pages, arXiv:0808.1446.
  6. Arkani-Hamed N., Kaplan J., On tree amplitudes in gauge theory and gravity, J. High Energy Phys. 2008 (2008), no. 4, 076, 21 pages, arXiv:0801.2385.
  7. Bedford J., Brandhuber A., Spence W., Travaglini G., A recursion relation for gravity amplitudes, Nuclear Phys. B 721 (2005), 98-110, hep-th/0502146.
  8. Benincasa P., Boucher-Veronneau C., Cachazo F., Taming tree amplitudes in general relativity, J. High Energy Phys. 2007 (2007), no. 11, 057, 25 pages, hep-th/0702032.
  9. Berkovits N., Alternative string theory in twistor space for ${\mathcal N}=4$ super-Yang-Mills theory, Phys. Rev. Lett. 93 (2004), 011601, 3 pages, hep-th/0402045.
  10. Bourjaily J.L., Trnka J., Volovich A., Wen C., The Grassmannian and the twistor string: connecting all trees in ${\mathcal N}=4$ SYM, J. High Energy Phys. 2011 (2011), no. 1, 038, 19 pages, arXiv:1006.1899.
  11. Britto R., Cachazo F., Feng B., New recursion relations for tree amplitudes of gluons, Nuclear Phys. B 715 (2005), 499-522, hep-th/0412308.
  12. Britto R., Cachazo F., Feng B., Witten E., Direct proof of the tree-level scattering amplitude recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005), 181602, 4 pages, hep-th/0501052.
  13. Bullimore M., New formulae for gravity amplitudes: parity invariance and soft limits, arXiv:1207.3940.
  14. Bullimore M., Mason L., Skinner D., Twistor-strings, Grassmannians and leading singularities, J. High Energy Phys. 2010 (2010), no. 3, 070, 54 pages, arXiv:0912.0539.
  15. Cachazo F., Skinner D., Gravity from rational curves in twistor space, Phys. Rev. Lett. 110 (2013), 161301, 4 pages, arXiv:1207.0741.
  16. Cachazo F., Svrcek P., Tree-level recursion relations in general relativity, hep-th/0502160.
  17. Cheung C., On-shell recursion relations for generic theories, J. High Energy Phys. 2010 (2010), no. 3, 098, 19 pages, arXiv:0808.0504.
  18. Dolan L., Goddard P., Gluon tree amplitudes in open twistor string theory, J. High Energy Phys. 2009 (2009), no. 12, 032, 32 pages, arXiv:0909.0499.
  19. Dolan L., Goddard P., General split helicity gluon tree amplitudes in open twistor string theory, J. High Energy Phys. 2010 (2010), no. 5, 044, 27 pages, arXiv:1002.4852.
  20. Dolan L., Goddard P., Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory, J. High Energy Phys. 2012 (2012), no. 6, 030, 37 pages, arXiv:1111.0950.
  21. Gukov S., Motl L., Neitzke A., Equivalence of twistor prescriptions for super Yang-Mills, Adv. Theor. Math. Phys. 11 (2007), 199-231, hep-th/0404085.
  22. He S., A link representation for gravity amplitudes, J. High Energy Phys. 2013 (2013), no. 10, 139, 11 pages, arXiv:1207.4064.
  23. Hodges A., New expressions for gravitational scattering amplitudes, J. High Energy Phys. 2013 (2013), no. 7, 075, 33 pages, arXiv:1108.2227.
  24. Hodges A., A simple formula for gravitational MHV amplitudes, arXiv:1204.1930.
  25. Mason L., Skinner D., Dual superconformal invariance, momentum twistors and Grassmannians, J. High Energy Phys. 2009 (2009), no. 11, 045, 39 pages, arXiv:0909.0250.
  26. Mason L., Skinner D., Scattering amplitudes and BCFW recursion in twistor space, J. High Energy Phys. 2010 (2010), no. 1, 064, 65 pages, arXiv:0903.2083.
  27. Mason L.J., Wolf M., Twistor actions for self-dual supergravities, Comm. Math. Phys. 288 (2009), 97-123, arXiv:0706.1941.
  28. Nandan D., Volovich A., Wen C., A Grassmannian étude in NMHV minors, J. High Energy Phys. 2010 (2010), no. 7, 061, 15 pages, arXiv:0912.3705.
  29. Penrose R., The nonlinear graviton, Gen. Relativity Gravitation 7 (1976), 171-176.
  30. Roiban R., Spradlin M., Volovich A., Tree-level $S$ matrix of Yang-Mills theory, Phys. Rev. D 70 (2004), 026009, 10 pages, hep-th/0403190.
  31. Skinner D., A direct proof of BCFW recursion for twistor-strings, J. High Energy Phys. 2011 (2011), no. 1, 072, 22 pages, arXiv:1007.0195.
  32. Spradlin M., Volovich A., From twistor string theory to recursion relations, Phys. Rev. D 80 (2009), 085022, 5 pages, arXiv:0909.0229.
  33. Spradlin M., Volovich A., Wen C., Three applications of a bonus relation for gravity amplitudes, Phys. Lett. B 674 (2009), 69-72, arXiv:0812.4767.
  34. Vergu C., Factorization of the connected prescription for Yang-Mills amplitudes, Phys. Rev. D 75 (2007), 025028, 7 pages, hep-th/0612250.
  35. Witten E., Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004), 779-797, hep-th/0403199.
  36. Witten E., Perturbative gauge theory as a string theory in twistor space, Comm. Math. Phys. 252 (2004), 189-258, hep-th/0312171.


Previous article  Next article   Contents of Volume 10 (2014)