|
SIGMA 10 (2014), 052, 26 pages arXiv:1403.4773
https://doi.org/10.3842/SIGMA.2014.052
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
Ángel Ballesteros a, Francisco J. Herranz a, Catherine Meusburger b and Pedro Naranjo a
a) Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
b) Department Mathematik, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 11, D-91058 Erlangen, Germany
Received March 09, 2014, in final form May 13, 2014; Published online May 18, 2014
Abstract
We construct the full quantum algebra, the corresponding Poisson-Lie structure and the associated quantum
spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS),
de Sitter (dS) and Minkowski spaces.
These deformations correspond to a Drinfel'd double structure on the isometry algebras that are motivated by their role
in (2+1)-gravity.
The construction includes the cosmological constant Λ as a deformation parameter, which allows one to treat
these cases in a common framework and to obtain a twisted version of both space- and time-like κ-AdS and dS
quantum algebras; their flat limit Λ→0 leads to a twisted quantum Poincaré algebra.
The resulting non-commutative spacetime is a nonlinear Λ-deformation of the κ-Minkowski one plus an
additional contribution generated by the twist.
For the AdS case, we relate this quantum deformation to two copies of the standard (Drinfel'd-Jimbo) quantum
deformation of the Lorentz group in three dimensions, which allows one to determine the impact of the twist.
Key words:
(2+1)-gravity; deformation; non-commutative spacetime; anti-de Sitter; cosmological constant; quantum groups;
Poisson-Lie groups; contraction.
pdf (548 kb)
tex (38 kb)
References
- Amelino-Camelia G., Doubly-special relativity: first results and key open
problems, Internat. J. Modern Phys. D 11 (2002),
1643-1669, gr-qc/0210063.
- Amelino-Camelia G., Quantum-spacetime phenomenology, Living Rev.
Relativity 16 (2013), 5, 137 pages, arXiv:0806.0339.
- Amelino-Camelia G., Smolin L., Starodubtsev A., Quantum symmetry, the
cosmological constant and Planck-scale phenomenology, Classical
Quantum Gravity 21 (2004), 3095-3110, hep-th/0306134.
- Arratia O., Herranz F.J., del Olmo M.A., Bicrossproduct structure of the
null-plane quantum Poincaré algebra, J. Phys. A: Math. Gen.
31 (1998), L1-L7, q-alg/9707025.
- Bacry H., Lévy-Leblond J.M., Possible kinematics, J. Math. Phys.
9 (1968), 1605-1614.
- Bais F.A., Müller N.M., Topological field theory and the quantum double of
SU(2), Nuclear Phys. B 530 (1998), 349-400,
hep-th/9804130.
- Bais F.A., Müller N.M., Schroers B.J., Quantum group symmetry and particle
scattering in (2+1)-dimensional quantum gravity, Nuclear Phys. B
640 (2002), 3-45, hep-th/0205021.
- Ballesteros Á., Bruno N.R., Herranz F.J., A new `doubly special relativity'
theory from a quantum Weyl-Poincaré algebra, J. Phys. A: Math.
Gen. 36 (2003), 10493-10503, hep-th/0305033.
- Ballesteros Á., Bruno N.R., Herranz F.J., A non-commutative Minkowskian
spacetime from a quantum AdS algebra, Phys. Lett. B 574
(2003), 276-282, hep-th/0306089.
- Ballesteros Á., Bruno N.R., Herranz F.J., Non-commutative relativistic
spacetimes and worldlines from 2+1 quantum (anti)de Sitter groups,
hep-th/0401244.
- Ballesteros Á., Herranz F.J., del Olmo M.A., Santander M., Four-dimensional
quantum affine algebras and space-time q-symmetries, J. Math.
Phys. 35 (1994), 4928-4940, hep-th/9310140.
- Ballesteros Á., Herranz F.J., del Olmo M.A., Santander M., Quantum (2+1)
kinematical algebras: a global approach, J. Phys. A: Math. Gen.
27 (1994), 1283-1297.
- Ballesteros Á., Herranz F.J., del Olmo M.A., Santander M., A new "null-plane"
quantum Poincaré algebra, Phys. Lett. B 351 (1995),
137-145, q-alg/9502019.
- Ballesteros Á., Herranz F.J., del Olmo M.A., Santander M., Non-standard quantum
so(2,2) and beyond, J. Phys. A: Math. Gen. 28
(1995), 941-955, hep-th/9406098.
- Ballesteros Á., Herranz F.J., Meusburger C., Three-dimensional gravity and
Drinfel'd doubles: spacetimes and symmetries from quantum deformations,
Phys. Lett. B 687 (2010), 375-381, arXiv:1001.4228.
- Ballesteros Á., Herranz F.J., Meusburger C., Drinfel'd doubles for
(2+1)-gravity, Classical Quantum Gravity 30 (2013),
155012, 20 pages, arXiv:1303.3080.
- Ballesteros Á., Herranz F.J., Meusburger C., A (2+1) non-commutative
Drinfel'd double spacetime with cosmological constant, Phys.
Lett. B 732 (2014), 201-209, arXiv:1402.2884.
- Ballesteros Á., Herranz F.J., Musso F., On quantum deformations of (anti-)de
Sitter algebras in (2+1) dimensions, J. Phys. Conf. Ser., to
appear, arXiv:1302.0684.
- Ballesteros Á., Herranz F.J., Pereña C.M., Null-plane quantum universal
R-matrix, Phys. Lett. B 391 (1997), 71-77,
q-alg/9607009.
- Batista E., Majid S., Noncommutative geometry of angular momentum space
U(su(2)), J. Math. Phys. 44 (2003),
107-137, hep-th/0205128.
- Belavin A.A., Drinfel'd V.G., Solutions of the classical Yang-Baxter
equation for simple Lie algebras, Funct. Anal. Appl. 16
(1982), 159-180.
- Borowiec A., Pachoł A., κ-Minkowski spacetime as the result of
Jordanian twist deformation, Phys. Rev. D 79 (2009),
045012, 11 pages, arXiv:0812.0576.
- Borowiec A., Pachoł A., κ-Minkowski spacetimes and DSR
algebras: fresh look and old problems, SIGMA 6 (2010), 086,
31 pages, arXiv:1005.4429.
- Bruno N.R., Amelino-Camelia G., Kowalski-Glikman J., Deformed boost
transformations that saturate at the Planck scale, Phys. Lett. B
522 (2001), 133-138, hep-th/0107039.
- Celeghini E., Giachetti R., Sorace E., Tarlini M., The three-dimensional
Euclidean quantum group E(3)q and its R-matrix, J. Math.
Phys. 32 (1991), 1159-1165.
- Celeghini E., Giachetti R., Sorace E., Tarlini M., Contractions of quantum
groups, in Quantum Groups (Leningrad, 1990), Lecture Notes in
Math., Vol. 1510, Springer, Berlin, 1992, 221-244.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
Cambridge, 1994.
- Daszkiewicz M., Canonical and Lie-algebraic twist deformations of
κ-Poincaré and contractions to κ-Galilei algebras,
Internat. J. Modern Phys. A 23 (2008), 4387-4400,
arXiv:0807.0133.
- Daszkiewicz M., Generalized twist deformations of Poincaré and Galilei
Hopf algebras, Rep. Math. Phys. 63 (2009), 263-277,
arXiv:0812.1613.
- Daszkiewicz M., Twist deformations of Newton-Hooke Hopf algebras,
Modern Phys. Lett. A 24 (2009), 1325-1334,
arXiv:0904.0432.
- de Azcárraga J.A., del Olmo M.A., Pérez Bueno J.C., Santander M.,
Graded contractions and bicrossproduct structure of deformed inhomogeneous
algebras, J. Phys. A: Math. Gen. 30 (1997), 3069-3086,
q-alg/9612022.
- de Azcárraga J.A., Pérez Bueno J.C., Deformed and extended Galilei
group Hopf algebras, J. Phys. A: Math. Gen. 29 (1996),
6353-6362, q-alg/9507005.
- Drinfel'd V.G., Hamiltonian structures on Lie groups, Lie bialgebras and
the geometric meaning of classical Yang-Baxter equations, Soviet
Math. Dokl. 27 (1983), 68-71.
- Drinfel'd V.G., Quantum groups, in Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986),
Amer. Math. Soc., Providence, RI, 1987, 798-820.
- Freidel L., Kowalski-Glikman J., Smolin L., 2+1 gravity and doubly special
relativity, Phys. Rev. D 69 (2004), 044001, 7 pages,
hep-th/0307085.
- Garay L.J., Quantum gravity and minimum length, Internat. J. Modern
Phys. A 10 (1995), 145-165, gr-qc/9403008.
- Gomez X., Classification of three-dimensional Lie bialgebras,
J. Math. Phys. 41 (2000), 4939-4956.
- Herranz F.J., Ballesteros Á., Superintegrability on three-dimensional
Riemannian and relativistic spaces of constant curvature, SIGMA
2 (2006), 010, 22 pages, math-ph/0512084.
- Herranz F.J., de Montigny M., del Olmo M.A., Santander M., Cayley-Klein
algebras as graded contractions of so(N+1), J. Phys. A:
Math. Gen. 27 (1994), 2515-2526, hep-th/9312126.
- Herranz F.J., Santander M., Conformal symmetries of spacetimes,
J. Phys. A: Math. Gen. 35 (2002), 6601-6618,
math-ph/0110019.
- Inönü E., Wigner E.P., On the contraction of groups and their
representations, Proc. Nat. Acad. Sci. USA 39 (1953),
510-524.
- Jimbo M., A q-difference analogue of U(g) and the
Yang-Baxter equation, Lett. Math. Phys. 10 (1985),
63-69.
- Kirillov Jr. A., Balsam B., Turaev-Viro invariants as an extended TQFT,
arXiv:1004.1533.
- Kowalski-Glikman J., Nowak S., Doubly special relativity theories as different
bases of κ-Poincaré algebra, Phys. Lett. B 539
(2002), 126-132, hep-th/0203040.
- Lukierski J., Lyakhovsky V., Mozrzymas M., κ-deformations of D=4
Weyl and conformal symmetries, Phys. Lett. B 538 (2002),
375-384, hep-th/0203182.
- Lukierski J., Minnaert P., Mozrzymas M., Quantum deformations of conformal
algebras introducing fundamental mass parameters, Phys. Lett. B
371 (1996), 215-222, q-alg/9507005.
- Lukierski J., Nowicki A., Doubly special relativity versus
κ-deformation of relativistic kinematics, Internat. J.
Modern Phys. A 18 (2003), 7-18, hep-th/0203065.
- Lukierski J., Nowicki A., Ruegg H., New quantum Poincaré algebra and
κ-deformed field theory, Phys. Lett. B 293 (1992),
344-352.
- Lukierski J., Ruegg H., Quantum κ-Poincaré in any dimension,
Phys. Lett. B 329 (1994), 189-194,
hep-th/9310117.
- Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., q-deformation of
Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
- Lukierski J., Ruegg H., Zakrzewski W.J., Classical and quantum mechanics of
free k-relativistic systems, Ann. Physics 243 (1995),
90-116, hep-th/9312153.
- Magueijo J., Smolin L., Lorentz invariance with an invariant energy scale,
Phys. Rev. Lett. 88 (2002), 190403, 4 pages,
hep-th/0112090.
- Majid S., Hopf algebras for physics at the Planck scale, Classical
Quantum Gravity 5 (1988), 1587-1606.
- Majid S., Foundations of quantum group theory, Cambridge University Press,
Cambridge, 1995.
- Majid S., Ruegg H., Bicrossproduct structure of κ-Poincaré group
and non-commutative geometry, Phys. Lett. B 334 (1994),
348-354, hep-th/9405107.
- Marcianò A., Amelino-Camelia G., Bruno N.R., Gubitosi G., Mandanici G.,
Melchiorri A., Interplay between curvature and Planck-scale effects in
astrophysics and cosmology, J. Cosmol. Astropart. Phys.
2010 (2010), no. 6, 030, 29 pages, arXiv:1004.1110.
- Maślanka P., The n-dimensional κ-Poincaré algebra and
group, J. Phys. A: Math. Gen. 26 (1993), L1251-L1253.
- Meusburger C., Schroers B.J., Quaternionic and Poisson-Lie structures in
three-dimensional gravity: the cosmological constant as deformation
parameter, J. Math. Phys. 49 (2008), 083510, 27 pages,
arXiv:0708.1507.
- Meusburger C., Schroers B.J., Generalised Chern-Simons actions for 3d
gravity and κ-Poincaré symmetry, Nuclear Phys. B
806 (2009), 462-488, arXiv:0805.3318.
- Šnobl L., Hlavatý L., Classification of six-dimensional real
Drinfeld doubles, Internat. J. Modern Phys. A 17 (2002),
4043-4067, math.QA/0202210.
- Takhtajan L.A., Lectures on quantum groups, in Introduction to Quantum Group
and Integrable Massive Models of Quantum Field Theory (Nankai, 1989),
Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1990, 69-197.
- Turaev V., Virelizier A., On two approaches to 3-dimensional TQFTs,
arXiv:1006.3501.
- Witten E., 2+1-dimensional gravity as an exactly soluble system,
Nuclear Phys. B 311 (1988), 46-78.
- Zakrzewski S., Quantum Poincaré group related to the
κ-Poincaré algebra, J. Phys. A: Math. Gen. 27
(1994), 2075-2082.
- Zakrzewski S., Poisson structures on Poincaré group, Comm. Math.
Phys. 185 (1997), 285-311, q-alg/9602001.
|
|