|
SIGMA 11 (2015), 001, 24 pages arXiv:1408.4088
https://doi.org/10.3842/SIGMA.2015.001
Geometry of Centroaffine Surfaces in $\mathbb{R}^5$
Nathaniel Bushek a and Jeanne N. Clelland b
a) Department of Mathematics, UNC - Chapel Hill, CB #3250, Phillips Hall, Chapel Hill, NC 27599, USA
b) Department of Mathematics, 395 UCB, University of Colorado, Boulder, CO 80309-0395, USA
Received August 23, 2014, in final form December 26, 2014; Published online January 06, 2015
Abstract
We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in $\mathbb{R}^5 \setminus \{0\}$ with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
Key words:
centroaffine geometry; Cartan's method of moving frames.
pdf (1145 kb)
tex (781 kb)
References
-
Clelland J.N., From Frenet to Cartan: the method of moving frames, in preparation.
-
Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
-
Furuhata H., Minimal centroaffine immersions of codimension two, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), 125-134.
-
Furuhata H., Kurose T., Self-dual centroaffine surfaces of codimension two with constant affine mean curvature, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 573-587.
-
Gardner R.B., Wilkens G.R., The fundamental theorems of curves and hypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 379-401.
-
Griffiths P., On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
-
Ivey T.A., Landsberg J.M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, Vol. 61, Amer. Math. Soc., Providence, RI, 2003.
-
Laugwitz D., Differentialgeometrie in Vektorräumen, unter besonderer Berücksichtigung der unendlichdimensionalen Räume, Friedr. Vieweg & Sohn, Braunschweig, 1965.
-
Li A.M., Wang C.P., Canonical centroaffine hypersurfaces in ${\mathbb R}^{n+1}$, Results Math. 20 (1991), 660-681.
-
Liu H.L., Wang C.P., The centroaffine Tchebychev operator, Results Math. 27 (1995), 77-92.
-
Mayer O., Myller A., La géométrie centroaffine des courbes planes, Ann. Scí. de l'Universit'e de Jassy 18 (1933), 234-280.
-
Milnor J., Husemoller D., Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 73, Springer-Verlag, New York - Heidelberg, 1973.
-
Nomizu K., Sasaki T., Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J. 132 (1993), 63-90.
-
Nomizu K., Vrancken L., A new equiaffine theory for surfaces in ${\mathbb R}^4$, Internat. J. Math. 4 (1993), 127-165.
-
Scharlach C., Centroaffine first order invariants of surfaces in ${\mathbb R}^4$, Results Math. 27 (1995), 141-159.
-
Scharlach C., Centroaffine differential geometry of (positive) definite oriented surfaces in ${\mathbb R}^4$, in New Developments in Differential Geometry (Budapest, 1996), Kluwer Acad. Publ., Dordrecht, 1999, 411-428.
-
Scharlach C., Simon U., Verstraelen L., Vrancken L., A new intrinsic curvature invariant for centroaffine hypersurfaces, Beiträge Algebra Geom. 38 (1997), 437-458.
-
Scharlach C., Vrancken L., A curvature invariant for centroaffine hypersurfaces. II, in Geometry and Topology of Submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, 341-350.
-
Scharlach C., Vrancken L., Centroaffine surfaces in ${\mathbb R}^4$ with planar $\nabla$-geodesics, Proc. Amer. Math. Soc. 126 (1998), 213-219.
-
Wang C.P., Centroaffine minimal hypersurfaces in ${\mathbb R}^{n+1}$, Geom. Dedicata 51 (1994), 63-74.
-
Wilkens G.R., Centro-affine geometry in the plane and feedback invariants of two-state scalar control systems, in Differential Geometry and Control (Boulder, CO, 1997), Proc. Sympos. Pure Math., Vol. 64, Amer. Math. Soc., Providence, RI, 1999, 319-333.
-
Yang Y., Liu H., Minimal centroaffine immersions of codimension two, Results Math. 52 (2008), 423-437.
-
Yang Y., Yu Y., Liu H., Flat centroaffine surfaces with the degenerate second fundamental form and vanishing Pick invariant in $\mathbb{R}^4$, J. Math. Anal. Appl. 397 (2013), 161-171.
|
|