|
SIGMA 11 (2015), 015, 23 pages arXiv:1405.4847
https://doi.org/10.3842/SIGMA.2015.015
Contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Howard S. Cohl a and Rebekah M. Palmer b
a) Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8910, USA
b) Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA
Received May 20, 2014, in final form February 09, 2015; Published online February 14, 2015
Abstract
For a fundamental solution of Laplace's equation on the $R$-radius $d$-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials.
Key words:
fundamental solution; hypersphere; Fourier expansion; Gegenbauer expansion.
pdf (503 kb)
tex (29 kb)
References
-
Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
-
Barut A.O., Inomata A., Junker G., Path integral treatment of the hydrogen atom in a curved space of constant curvature, J. Phys. A: Math. Gen. 20 (1987), 6271-6280.
-
Byrd P.F., Friedman M.D., Handbook of elliptic integrals for engineers and physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Vol. 67, Springer-Verlag, Berlin - Göttingen - Heidelberg, 1954.
-
Chandrasekhar S., An introduction to the study of stellar structure, Dover Publications, Inc., New York, 1957.
-
Cohl H.S., Fundamental solution of Laplace's equation in hyperspherical geometry, SIGMA 7 (2011), 108, 14 pages, arXiv:1108.3679.
-
Cohl H.S., Kalnins E.G., Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry, J. Phys. A: Math. Theor. 45 (2012), 145206, 32 pages, arXiv:1105.0386.
-
Cohl H.S., Rau A.R.P., Tohline J.E., Browne D.A., Cazes J.E., Barnes E.I., Useful alternative to the multipole expansion of $1/r$ potentials, Phys. Rev. A 64 (2001), 052509, 5 pages, arXiv:1104.1499.
-
Cohl H.S., Tohline J.E., A compact cylindrical Green's function expansion for the solution of potential problems, Astrophys. J. 527 (1999), 86-101.
-
Folland G.B., Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995.
-
Fox L., Parker I.B., Chebyshev polynomials in numerical analysis, Oxford University Press, London - New York - Toronto, 1968.
-
Freeden W., Schreiner M., Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup, Advances in Geophysical and Environmental Mechanics, Vol. 67, Springer-Verlag, Berlin, 2008.
-
Genest V.X., Vinet L., Zhedanov A., The Bannai-Ito algebra and a superintegrable system with reflections on the two-sphere, J. Phys. A: Math. Theor. 47 (2014), 205202, 13 pages, arXiv:1401.1525.
-
Grosche C., Karayan Kh.H., Pogosyan G.S., Sissakian A.N., Quantum motion on the three-dimensional sphere: the ellipso-cylindrical bases, J. Phys. A: Math. Gen. 30 (1997), 1629-1657.
-
Grosche C., Pogosyan G.S., Sissakian A.N., Path integral discussion for Smorodinsky-Winternitz potentials. II. The two- and three-dimensional sphere, Fortschr. Phys. 43 (1995), 523-563.
-
Hakobyan Ye.M., Pogosyan G.S., Sissakian A. N. V.V.I., Isotropic oscillator in the space of constant positive curvature. Interbasis expansions, Phys. Atomic Nuclei 62 (1999), 623-637, quant-ph/9710045.
-
Herranz F.J., Ballesteros Á., Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature, SIGMA 2 (2006), 010, 22 pages, math-ph/0512084.
-
Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere, J. Math. Phys. 40 (1999), 1549-1573.
-
Kalnins E.G., Miller Jr. W., Post S., Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials, SIGMA 9 (2013), 057, 28 pages, arXiv:1212.4766.
-
Lee J.M., Riemannian manifolds. An introduction to curvature, Graduate Texts in Mathematics, Vol. 176, Springer-Verlag, New York, 1997.
-
Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, Vol. 52, 3rd ed., Springer-Verlag, New York, 1966.
-
Mhaskar H.N., Narcowich F.J., Prestin J., Ward J.D., $L^p$ Bernstein estimates and approximation by spherical basis functions, Math. Comp. 79 (2010), 1647-1679, arXiv:0810.5075.
-
Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
-
Narcowich F.J., Rowe S.T., Ward J.D., A novel Galerkin method for solving PDEs on the sphere using highly localized kernel bases, arXiv:1404.5263.
-
Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W., NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
-
Pogosyan G.S., Yakhno A., Lie algebra contractions and separation of variables. Three-dimensional sphere, Phys. Atomic Nuclei 72 (2009), 836-844.
-
Schrödinger E., Eigenschwingungen des sphärischen Raumes, Comment. Pontificia Acad. Sci. 2 (1938), 321-364.
-
Schrödinger E., A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. Sect. A. 46 (1940), 9-16.
-
Wen Z.Y., Avery J., Some properties of hyperspherical harmonics, J. Math. Phys. 26 (1985), 396-403.
|
|