|
SIGMA 11 (2015), 026, 14 pages arXiv:1411.2000
https://doi.org/10.3842/SIGMA.2015.026
Contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet
On the $q$-Charlier Multiple Orthogonal Polynomials
Jorge Arvesú and Andys M. Ramírez-Aberasturis
Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, 28911, Leganés, Spain
Received November 10, 2014, in final form March 23, 2015; Published online March 28, 2015
Abstract
We introduce a new family of special functions, namely $q$-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to $q$-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a $q$-analogue of the second of Appell's hypergeometric functions is given. A high-order linear $q$-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
Key words:
multiple orthogonal polynomials; Hermite-Padé approximation; difference equations; classical orthogonal polynomials of a discrete variable; Charlier polynomials; $q$-polynomials.
pdf (388 kb)
tex (19 kb)
References
-
Álvarez-Nodarse R., Arvesú J., On the $q$-polynomials in the exponential lattice $x(s)=c_1q^s+c_3$, Integral Transform. Spec. Funct. 8 (1999), 299-324.
-
Aptekarev A., Arvesú J., Asymptotics for multiple Meixner polynomials, J. Math. Anal. Appl. 411 (2014), 485-505, arXiv:1207.0463.
-
Arvesú J., On some properties of $q$-Hahn multiple orthogonal polynomials, J. Comput. Appl. Math. 233 (2010), 1462-1469.
-
Arvesú J., Coussement J., Van Assche W., Some discrete multiple orthogonal polynomials, J. Comput. Appl. Math. 153 (2003), 19-45.
-
Arvesú J., Esposito C., A high-order $q$-difference equation for $q$-Hahn multiple orthogonal polynomials, J. Difference Equ. Appl. 18 (2012), 833-847, arXiv:0910.4041.
-
Borodin A., Ferrari P.L., Sasamoto T., Two speed TASEP, J. Stat. Phys. 137 (2009), 936-977, arXiv:0904.4655.
-
Daems E., Kuijlaars A.B.J., A Christoffel-Darboux formula for multiple orthogonal polynomials, J. Approx. Theory 130 (2004), 190-202, math.CA/0402031.
-
Ernst T., On the $q$-analogues of Srivastava's triple hypergeometric functions, Axioms 2 (2013), 85-99.
-
Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
-
Haneczok M., Van Assche W., Interlacing properties of zeros of multiple orthogonal polynomials, J. Math. Anal. Appl. 389 (2012), 429-438, arXiv:1108.3917.
-
Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
-
Lee D.W., Difference equations for discrete classical multiple orthogonal polynomials, J. Approx. Theory 150 (2008), 132-152.
-
Miki H., Vinet L., Zhedanov A., Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials, Phys. Lett. A 376 (2011), 65-69.
-
Ndayiragije F., Van Assche W., Asymptotics for the ratio and the zeros of multiple Charlier polynomials, J. Approx. Theory 164 (2012), 823-840, arXiv:1108.3918.
-
Nikiforov A.F., Suslov S.K., Uvarov V.B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991.
-
Nikishin E.M., Sorokin V.N., Rational approximations and orthogonality, Translations of Mathematical Monographs, Vol. 92, Amer. Math. Soc., Providence, RI, 1991.
-
Postelmans K., Van Assche W., Multiple little $q$-Jacobi polynomials, J. Comput. Appl. Math. 178 (2005), 361-375, math.CA/0403532.
-
Prévost M., Rivoal T., Remainder Padé approximants for the exponential function, Constr. Approx. 25 (2007), 109-123.
-
Van Assche W., Difference equations for multiple Charlier and Meixner polynomials, in Proceedings of the Sixth International Conference on Difference Equations, CRC, Boca Raton, FL, 2004, 549-557.
-
Van Assche W., Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Approx. Theory 163 (2011), 1427-1448, arXiv:1104.3778.
|
|