|
SIGMA 11 (2015), 031, 23 pages arXiv:1312.4581
https://doi.org/10.3842/SIGMA.2015.031
Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
Marek Grochowski ab and Ben Warhurst c
a) Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, ul. Dewajtis 5, 01-815 Waszawa, Poland
b) Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland
c) Institute of Mathematics, The Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Received October 10, 2014, in final form March 30, 2015; Published online April 17, 2015
Abstract
In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact $3$ manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in general sub-Lorentzian manifolds. We then focus attention back to the case where the underlying manifold is a contact $3$ manifold and more specifically when the manifold is also a Lie group and the structure is left-invariant.
Key words:
sub-Lorentzian; contact distribution; left-invariant; symmetry.
pdf (439 kb)
tex (30 kb)
References
-
Agrachev A.A., Barilari D., Sub-Riemannian structures on 3D Lie groups, J. Dyn. Control Syst. 18 (2012), 21-44, arXiv:1007.4970.
-
Agrachev A.A., El Alaoui El-H.Ch., Gauthier J.-P., Sub-Riemannian metrics on ${\mathbb R}^3$, in Geometric Control and Non-Holonomic Mechanics (Mexico City, 1996), CMS Conf. Proc., Vol. 25, Amer. Math. Soc., Providence, RI, 1998, 29-78.
-
Beem J.K., Ehrlich P.E., Easley K.L., Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 202, 2nd ed., Marcel Dekker, Inc., New York, 1996.
-
Berestovskii V.N., Gichev V.M., Metrized semigroups, J. Math. Sci. 19 (2004), 10-29.
-
Boarotto F., Conformal equivalence of sub-Riemannian 3D contact structures on Lie groups, arXiv:1412.2358.
-
Čap A., Automorphism groups of parabolic geometries, Rend. Circ. Mat. Palermo (2005), suppl., 233-239.
-
El Alaoui El-H.Ch., Gauthier J.-P., Kupka I., Small sub-Riemannian balls in $\mathbb{R}^{3}$, J. Dyn. Control Syst. 2 (1996), 359-421.
-
Falbel E., Gorodski C., Sub-Riemannian homogeneous spaces in dimensions $3$ and $4$, Geom. Dedicata 62 (1996), 227-252.
-
Grochowski M., Normal forms of germs of contact sub-Lorentzian structures on ${\mathbb R}^3$. Differentiability of the sub-Lorentzian distance function, J. Dynam. Control Systems 9 (2003), 531-547.
-
Grochowski M., On the Heisenberg sub-Lorentzian metric on ${\mathbb R}^3$, in Geometric Singularity Theory, Banach Center Publ., Vol. 65, Polish Acad. Sci., Warsaw, 2004, 57-65.
-
Grochowski M., Reachable sets for the Heisenberg sub-Lorentzian structure on ${\mathbb R}^3$. An estimate for the distance function, J. Dyn. Control Syst. 12 (2006), 145-160.
-
Grochowski M., Properties of reachable sets in the sub-Lorentzian geometry, J. Geom. Phys. 59 (2009), 885-900.
-
Grochowski M., Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type, J. Dyn. Control Syst. 17 (2011), 49-75.
-
Grochowski M., Reachable sets for contact sub-Lorentzian structures on ${\mathbb R}^3$. Application to control affine systems on ${\mathbb R}^3$ with a scalar input, J. Math. Sci. 177 (2011), 383-394.
-
Grochowski M., Remarks on global sub-Lorentzian geometry, Anal. Math. Phys. 3 (2013), 295-309.
-
Grochowski M., Medvedev A., Warhurst B., Classification of 3-dimensional contact left-invariant sub-Lorentzian structures, in preparation.
-
Grong E., Vasil'ev A., Sub-Riemannian and sub-Lorentzian geometry on ${\rm SU}(1,1)$ and on its universal cover, J. Geom. Mech. 3 (2011), 225-260, arXiv:0910.0945.
-
Hill C.D., Nurowski P., Differential equations and para-CR structures, Boll. Unione Mat. Ital. 3 (2010), 25-91, arXiv:0909.2458.
-
Huang T., Yang X., Geodesics in the Heisenberg group $H^n$ with a Lorentzian metric, J. Dyn. Control Syst. 18 (2012), 479-498.
-
Korolko A., Markina I., Nonholonomic Lorentzian geometry on some ${\mathbb H}$-type groups, J. Geom. Anal. 19 (2009), 864-889, arXiv:0809.4450.
-
Korolko A., Markina I., Geodesics on ${\mathbb H}$-type quaternion groups with sub-Lorentzian metric and their physical interpretation, Complex Anal. Oper. Theory 4 (2010), 589-618, arXiv:1004.1508.
-
Kruglikov B., The D., The gap phenomenon in parabolic geometries, arXiv:1303.1307.
-
Liu W., Sussman H.J., Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc. 118 (1995), x+104 pages.
-
Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
-
Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1-82.
|
|