|
SIGMA 11 (2015), 033, 32 pages arXiv:1409.8622
https://doi.org/10.3842/SIGMA.2015.033
Contribution to the Special Issue on New Directions in Lie Theory
Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A
Yuki Kanakubo and Toshiki Nakashima
Division of Mathematics, Sophia University, Yonban-cho 4, Chiyoda-ku, Tokyo 102-0081, Japan
Received October 01, 2014, in final form April 14, 2015; Published online April 23, 2015
Abstract
Let $G$ be a simply connected simple algebraic group over $\mathbb{C}$, $B$ and $B_-$ be two opposite Borel subgroups in $G$ and $W$ be the Weyl group. For $u$, $v\in W$, it is known that the coordinate ring ${\mathbb C}[G^{u,v}]$ of the double Bruhat cell $G^{u,v}=BuB\cap B_-vB_-$ is isomorphic to an upper cluster algebra $\bar{{\mathcal A}}({\bf i})_{{\mathbb C}}$ and the generalized minors $\{\Delta(k;{\bf i})\}$ are the cluster variables belonging to a given initial seed in ${\mathbb C}[G^{u,v}]$ [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case $G={\rm SL}_{r+1}({\mathbb C})$, $v=e$ and some special $u\in W$, we shall describe the generalized minors $\{\Delta(k;{\bf i})\}$ as summations of monomial realizations of certain Demazure crystals.
Key words:
cluster variables; double Bruhat cells; crystal bases; monomial realizations, generalized minors.
pdf (568 kb)
tex (30 kb)
References
-
Berenstein A., Fomin S., Zelevinsky A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52, math.RT/0305434.
-
Berenstein A., Zelevinsky A., Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), 77-128, math.RT/9912012.
-
Fomin S., Zelevinsky A., Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335-380, math.RT/9802056.
-
Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
-
Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, Vol. 42, Amer. Math. Soc., Providence, RI, 2002.
-
Kashiwara M., On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
-
Kashiwara M., Bases cristallines des groupes quantiques, Cours Spécialisés, Vol. 9, Société Mathématique de France, Paris, 2002.
-
Kashiwara M., Realizations of crystals, in Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., Vol. 325, Amer. Math. Soc., Providence, RI, 2003, 133-139, math.QA/0202268.
-
Kashiwara M., Nakashima T., Crystal graphs for representations of the $q$-analogue of classical Lie algebras, J. Algebra 165 (1994), 295-345.
-
Nakajima H., $t$-analogs of $q$-characters of quantum affine algebras of type $A_n$, $D_n$, in Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., Vol. 325, Amer. Math. Soc., Providence, RI, 2003, 141-160, math.QA/0204184.
-
Nakashima T., Decorations on geometric crystals and monomial realizations of crystal bases for classical groups, J. Algebra 399 (2014), 712-769, arXiv:1301.7301.
|
|