|
SIGMA 11 (2015), 059, 47 pages arXiv:1412.4655
https://doi.org/10.3842/SIGMA.2015.059
A Perturbation of the Dunkl Harmonic Oscillator on the Line
Jesús A. Álvarez López a, Manuel Calaza b and Carlos Franco a
a) Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
b) Laboratorio de Investigación 2 and Rheumatology Unit, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
Received February 19, 2015, in final form July 20, 2015; Published online July 25, 2015; Corrected June 28, 2017
Abstract
Let $J_\sigma$ be the Dunkl harmonic oscillator on ${\mathbb{R}}$ ($\sigma$>$-1/2$. For $0$<$u$<$1$ and $\xi$>$0$, it is proved that, if $\sigma$>$u-1/2$, then the operator $U=J_\sigma+\xi|x|^{-2u}$, with appropriate domain, is essentially self-adjoint in $L^2({\mathbb{R}},|x|^{2\sigma} dx)$, the Schwartz space ${\mathcal{S}}$ is a core of $\overline U^{1/2}$, and $\overline U$ has a discrete spectrum, which is estimated in terms of the spectrum of $\overline{J_\sigma}$. A generalization $J_{\sigma,\tau}$ of $J_\sigma$ is also considered by taking different parameters $\sigma$ and $\tau$ on even and odd functions. Then extensions of the above result are proved for $J_{\sigma,\tau}$, where the perturbation has an additional term involving, either the factor $x^{-1}$ on odd functions, or the factor $x$ on even functions. Versions of these results on ${\mathbb{R}}_+$ are derived.
Key words:
Dunkl harmonic oscillator; perturbation theory.
pdf (1645 kb)
tex (1265 kb)
[previous version:
pdf (582 kb)
tex (33 kb)]
References
-
Álvarez López J., Calaza M., Application of the method of Bonan-Clark to the generalized Hermite polynomials, arXiv:1101.5022.
-
Álvarez López J., Calaza M., Witten's perturbation on strata, Asian J. Math. to appear, arXiv:1205.0348.
-
Álvarez López J., Calaza M., Embedding theorems for the Dunkl harmonic oscillator, SIGMA 10 (2014), 004, 16 pages, arXiv:1301.4196.
-
Álvarez López J., Calaza M., Witten's perturbation on strata with generalized adapted metrics, in preparation.
-
Askey R., Wainger S., Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708.
-
Brasselet J.P., Hector G., Saralegi M., ${\mathcal L}^2$-cohomologie des espaces stratifiés, Manuscripta Math. 76 (1992), 21-32.
-
Cheung W.-S., Generalizations of Hölder's inequality, Int. J. Math. Math. Sci. 26 (2001), 7-10, arXiv:1109.5567.
-
Dunkl C.F., Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), 33-60.
-
Dunkl C.F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167-183.
-
Dunkl C.F., Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227.
-
Dunkl C.F., Symmetric functions and $B_N$-invariant spherical harmonics, J. Phys. A: Math. Gen. 35 (2002), 10391-10408, math.CA/0207122.
-
Erdélyi A., Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. 24 (1960), 235-250.
-
Genest V.X., Vinet L., Zhedanov A., The singular and the $2:1$ anisotropic Dunkl oscillators in the plane, J. Phys. A: Math. Theor. 46 (2013), 325201, 17 pages, arXiv:1305.2126.
-
Kato T., Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
-
Muckenhoupt B., Asymptotic forms for Laguerre polynomials, Proc. Amer. Math. Soc. 24 (1970), 288-292.
-
Muckenhoupt B., Mean convergence of Laguerre and Hermite series. II, Trans. Amer. Math. Soc. 147 (1970), 433-460.
-
Nagase M., $L^{2}$-cohomology and intersection homology of stratified spaces, Duke Math. J. 50 (1983), 329-368.
-
Nagase M., Sheaf theoretic $L^2$-cohomology, in Complex Analytic Singularities, Adv. Stud. Pure Math., Vol. 8, North-Holland, Amsterdam, 1987, 273-279.
-
Nowak A., Stempak K., Imaginary powers of the Dunkl harmonic oscillator, SIGMA 5 (2009), 016, 12 pages, arXiv:0902.1958.
-
Nowak A., Stempak K., Riesz transforms for the Dunkl harmonic oscillator, Math. Z. 262 (2009), 539-556, arXiv:0802.0474.
-
Plyushchay M., Hidden nonlinear supersymmetries in pure parabosonic systems, Internat. J. Modern Phys. A 15 (2000), 3679-3698, hep-th/9903130.
-
Reed M., Simon B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York - London, 1978.
-
Rosenblum M., Generalized Hermite polynomials and the Bose-like oscillator calculus, in Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., Vol. 73, Editors A. Feintuch, I. Gohberg, Birkhäuser, Basel, 1994, 369-396, math.CA/9307224.
-
Rösler M., Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), 519-542, q-alg/9703006.
-
Rösler M., Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., Vol. 1817, Editors E. Koelink, W. Van Assche, Springer, Berlin, 2003, 93-135, math.CA/0210366.
-
Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
-
van Diejen J.F., Vinet L. (Editors), Calogero-Moser-Sutherland models, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2000.
-
Yang L.M., A note on the quantum rule of the harmonic oscillator, Phys. Rev. 84 (1951), 788-790.
|
|