|
SIGMA 11 (2015), 072, 10 pages arXiv:1503.00169
https://doi.org/10.3842/SIGMA.2015.072
Contribution to the Special Issue on Poisson Geometry in Mathematics and Physics
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
Jonathan Lorand a and Alan Weinstein b
a) Department of Mathematics, ETH Zurich, Zurich, Switzerland
b) Department of Mathematics, University of California, Berkeley, CA 94720 USA
Received March 01, 2015, in final form September 03, 2015; Published online September 10, 2015
Abstract
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over $\mathbb{Z}$, which takes one 10-tuple of invariants to the other.
Key words:
coisotropic subspace; direct sum decomposition; Poisson vector space; presymplectic vector space.
pdf (353 kb)
tex (17 kb)
References
-
Atiyah M.F., On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307-317.
-
Benenti S., Tulczyjew W., Symplectic linear relations, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5) 5 (1981), 71-140.
-
Brenner S., Endomorphism algebras of vector spaces with distinguished sets of subspaces, J. Algebra 6 (1967), 100-114.
-
Etingof P., Golberg O., Hensel S., Liu T., Schwendner A., Vaintrob D., Yudovina E., Introduction to representation theory, Lecture notes, available at \urlhttp://www-math.mit.edu/ etingof/replect.pdf.
-
Gel'fand I.M., Ponomarev V.A., Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, in Hilbert Space Operators and Operator Algebras (Proc. Internat. Conf., Tihany, 1970), Colloq. Math. Soc. János Bolyai, Vol. 5, North-Holland, Amsterdam, 1972, 163-237.
-
Gutt J., Normal forms for symplectic matrices, Port. Math. 71 (2014), 109-139, arXiv:1307.2403.
-
Li-Bland D., Weinstein A., Selective categories and linear canonical relations, SIGMA 10 (2014), 100, 31 pages, arXiv:1401.7302.
-
Lorand J., Classifying linear canonical relations, arXiv:1508.04568.
-
Lorand J., Weinstein A., Coisotropic pairs, arXiv:1408.5620.
-
Lorand J., Weinstein A., Decomposition of (co)isotropic relations, in preparation.
-
Roman S., Advanced linear algebra, Graduate Texts in Mathematics, Vol. 135, 3rd ed., Springer, New York, 2008.
-
Sergeichuk V.V., Classification of pairs of subspaces in spaces with scalar product, Ukrainian Math. J. 42 (1990), 487-491.
-
Towber J., Linear relations, J. Algebra 19 (1971), 1-20.
-
Weinstein A., Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705-727.
-
Weinstein A., A note on the Wehrheim-Woodward category, J. Geom. Mech. 3 (2011), 507-515, arXiv:1012.0105.
-
Weinstein A., Categories of (co)isotropic linear relations, arXiv:1503.06240.
-
Williamson J., On the normal forms of linear canonical transformations in dynamics, Amer. J. Math. 59 (1937), 599-617.
|
|