Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 079, 16 pages      arXiv:1412.5981      https://doi.org/10.3842/SIGMA.2015.079
Contribution to the Special Issue on Poisson Geometry in Mathematics and Physics

Lie Algebroids in the Loday-Pirashvili Category

Ana Rovi ab
a) School of Mathematics and Statistics, University of Glasgow, University Gardens, Glasgow G12 8QW, UK
b) School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Received February 27, 2015, in final form September 28, 2015; Published online October 02, 2015

Abstract
We describe Lie-Rinehart algebras in the tensor category $\mathcal{LM}$ of linear maps in the sense of Loday and Pirashvili and construct a functor from Lie-Rinehart algebras in $\mathcal{LM}$ to Leibniz algebroids.

Key words: Lie algebroid; Leibniz algebra; Courant algebroid; Leibniz algebroid.

pdf (434 kb)   tex (22 kb)

References

  1. Baraglia D., Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012), 903-934, arXiv:1101.0856.
  2. Bloh A., On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165 (1965), 471-473.
  3. Böhm G., Szlachányi K., Hopf algebroids with bijective antipodes: axioms, integrals, and duals, J. Algebra 274 (2004), 708-750, math.QA/0302325.
  4. Cuvier C., Homologie de Leibniz et homologie de Hochschild, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 569-572.
  5. Figueroa-O'Farrill J.M., Deformations of 3-algebras, J. Math. Phys. 50 (2009), 113514, 27 pages, arXiv:0903.4871.
  6. Herz J.-C., Pseudo-algèbres de Lie. I, C. R. Acad. Sci. Paris 236 (1953), 1935-1937.
  7. Huebschmann J., Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113.
  8. Huebschmann J., On the quantization of Poisson algebras, in Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Progr. Math., Vol. 99, Birkhäuser Boston, Boston, MA, 1991, 204-233.
  9. Huebschmann J., Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble) 48 (1998), 425-440, dg-ga/9704005.
  10. Ibáñez R., de León M., Marrero J.C., Padrón E., Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A: Math. Gen. 32 (1999), 8129-8144, math-ph/9906027.
  11. Kinyon M.K., Weinstein A., Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math. 123 (2001), 525-550, math.DG/0006022.
  12. Kosmann-Schwarzbach Y., Courant algebroids. A short history, SIGMA 9 (2013), 014, 8 pages, arXiv:1212.0559.
  13. Krähmer U., Rovi A., A Lie-Rinehart algebra with no antipode, Comm. Algebra 43 (2015), 4049-4053.
  14. Krähmer U., Wagemann F., Racks, Leibniz algebras and Yetter-Drinfel'd modules, Georgian Math. J., to appear, arXiv:1403.4148.
  15. Kurdiani R., Pirashvili T., A Leibniz algebra structure on the second tensor power, J. Lie Theory 12 (2002), 583-596.
  16. Liu Z.-J., Weinstein A., Xu P., Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), 547-574, dg-ga/9508013.
  17. Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (1993), 269-293.
  18. Loday J.-L., Pirashvili T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), 139-158.
  19. Loday J.-L., Pirashvili T., The tensor category of linear maps and Leibniz algebras, Georgian Math. J. 5 (1998), 263-276.
  20. Pradines J., Théorie de Lie pour les groupoï des différentiables. Calcul différenetiel dans la catégorie des groupoï des infinitésimaux, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A245-A248.
  21. Rinehart G.S., Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222.
  22. Rovi A., Hopf algebroids associated to Jacobi algebras, Int. J. Geom. Methods Mod. Phys. 11 (2014), 1450092, 20 pages, arXiv:1311.4181.
  23. Roytenberg D., Courant-Dorfman algebras and their cohomology, Lett. Math. Phys. 90 (2009), 311-351, arXiv:0902.4862.
  24. Stiénon M., Xu P., Modular classes of Loday algebroids, C. R. Math. Acad. Sci. Paris 346 (2008), 193-198, arXiv:0803.2047.


Previous article  Next article   Contents of Volume 11 (2015)