|
SIGMA 11 (2015), 082, 7 pages arXiv:1407.6020
https://doi.org/10.3842/SIGMA.2015.082
Equivariant Join and Fusion of Noncommutative Algebras
Ludwik Dąbrowski a, Tom Hadfield b and Piotr M. Hajac c
a) SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy
b) G-Research, Whittington House, 19-30 Alfred Place, London WC1E 7EA, UK
c) Institytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-656 Warszawa, Poland
Received June 30, 2015, in final form October 03, 2015; Published online October 13, 2015
Abstract
We translate the concept of the join of topological spaces to the language of $C^*$-algebras, replace the $C^*$-algebra of functions on the interval $[0,1]$ with evaluation maps at $0$ and $1$ by a unital $C^*$-algebra $C$ with appropriate two surjections, and introduce the notion of the fusion of unital $C^*$-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra $P$ with the coacting Hopf algebra $H$. We prove that, if the comodule algebra $P$ is principal, then so is the fusion comodule algebra. When $C=C([0,1])$ and the two surjections are evaluation maps at $0$ and $1$, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal $G$-bundle $X$, the diagonal action of $G$ on the join $X*G$ is free.
Key words:
$C^*$-algebras; Hopf algebras; free actions.
pdf (316 kb)
tex (15 kb)
References
-
Baum P.F., Dąbrowski L., Hajac P.M., Noncommutative Borsuk-Ulam-type conjectures, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, to appear, arXiv:1502.05756.
-
Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum group on unital $C^*$-algebras, arXiv:1304.2812.
-
Brzeziński T., Hajac P.M., The Chern-Galois character, C. R. Math. Acad. Sci. Paris 338 (2004), 113-116, math.KT/0306436.
-
Dąbrowski L., Hadfield T., Hajac P.M., Matthes R., Wagner E., Index pairings for pullbacks of ${C}^*$-algebras, in Operator Algebras and Quantum Groups, Banach Center Publ., Vol. 98, Polish Acad. Sci. Inst. Math., Warsaw, 2012, 67-84, math.QA/0702001.
-
Dąbrowski L., De Commer K., Hajac P.M., Wagner E., Noncommutative bordism of free actions of compact quantum groups on unital $C^*$-algebras, in preparation.
-
Hajac P.M., Strong connections on quantum principal bundles, Comm. Math. Phys. 182 (1996), 579-617, hep-th/9406129.
-
Hajac P.M., Krähmer U., Matthes R., Zieliński B., Piecewise principal comodule algebras, J. Noncommut. Geom. 5 (2011), 591-614, arXiv:0707.1344.
-
Jiang X., Su H., On a simple unital projectionless $C^*$-algebra, Amer. J. Math. 121 (1999), 359-413.
-
Milnor J., Construction of universal bundles. II, Ann. of Math. 63 (1956), 430-436.
-
Pflaum M.J., Quantum groups on fibre bundles, Comm. Math. Phys. 166 (1994), 279-315, hep-th/9401085.
-
Takesaki M., Theory of operator algebras. I, Springer-Verlag, New York - Heidelberg, 1979.
-
Wassermann S., Exact $C^*$-algebras and related topics, Lecture Notes Series, Vol. 19, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994.
-
Woronowicz S.L., Compact quantum groups, in Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845-884.
|
|