|
SIGMA 11 (2015), 087, 22 pages arXiv:1505.02833
https://doi.org/10.3842/SIGMA.2015.087
Bispectrality of $N$-Component KP Wave Functions: A Study in Non-Commutativity
Alex Kasman
Department of Mathematics, College of Charleston, USA
Received May 13, 2015, in final form October 28, 2015; Published online November 01, 2015
Abstract
A wave function of the $N$-component KP Hierarchy with continuous flows determined by an invertible matrix $H$ is constructed from the choice of an $MN$-dimensional space of finitely-supported vector distributions. This wave function is shown to be an eigenfunction for a ring of matrix differential operators in $x$ having eigenvalues that are matrix functions of the spectral parameter $z$. If the space of distributions is invariant under left multiplication by $H$, then a matrix coefficient differential-translation operator in $z$ is shown to share this eigenfunction and have an eigenvalue that is a matrix function of $x$. This paper not only generates new examples of bispectral operators, it also explores the consequences of non-commutativity for techniques and objects used in previous investigations.
Key words:
bispectrality; multi-component KP hierarchy; Darboux transformations; non-commutative solitons.
pdf (486 kb)
tex (32 kb)
References
-
Bakalov B., Horozov E., Yakimov M., General methods for constructing bispectral operators, Phys. Lett. A 222 (1996), 59-66, q-alg/9605011.
-
Bergvelt M., Gekhtman M., Kasman A., Spin Calogero particles and bispectral solutions of the matrix KP hierarchy, Math. Phys. Anal. Geom. 12 (2009), 181-200, arXiv:0806.2613.
-
Bergvelt M.J., ten Kroode A.P.E., Partitions, vertex operator constructions and multi-component KP equations, Pacific J. Math. 171 (1995), 23-88, hep-th/9212087.
-
Boyallian C., Liberati J.I., Matrix-valued bispectral operators and quasideterminants, J. Phys. A: Math. Theor. 41 (2008), 365209, 11 pages.
-
Castro M.M., Grünbaum F.A., The algebra of differential operators associated to a family of matrix-valued orthogonal polynomials: five instructive examples, Int. Math. Res. Not. 2006 (2006), 47602, 33 pages.
-
Chalub F.A.C.C., Zubelli J.P., Matrix bispectrality and Huygens' principle for Dirac operators, in Partial Differential Equations and Inverse Problems, Contemp. Math., Vol. 362, Amer. Math. Soc., Providence, RI, 2004, 89-112.
-
Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations. III. Operator approach to the Kadomtsev-Petviashvili equation, J. Phys. Soc. Japan 50 (1981), 3806-3812.
-
Duistermaat J.J., Grünbaum F.A., Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240.
-
Duran A.J., Matrix inner product having a matrix symmetric second order differential operator, Rocky Mountain J. Math. 27 (1997), 585-600.
-
Etingof P., Gelfand I., Retakh V., Factorization of differential operators, quasideterminants, and nonabelian Toda field equations, Math. Res. Lett. 4 (1997), 413-425, q-alg/9701008.
-
Fock V., Gorsky A., Nekrasov N., Rubtsov V., Duality in integrable systems and gauge theories, J. High Energy Phys. 2000 (2000), no. 7, 028, 40 pages, hep-th/9906235.
-
Geiger J., Horozov E., Yakimov M., Noncommutative bispectral Darboux transformations, arXiv:1508.07879.
-
Grünbaum F.A., Some noncommutative matrix algebras arising in the bispectral problem, SIGMA 10 (2014), 078, 9 pages, arXiv:1407.6458.
-
Grünbaum F.A., Iliev P., A noncommutative version of the bispectral problem, J. Comput. Appl. Math. 161 (2003), 99-118.
-
Grünbaum F.A., Pacharoni I., Tirao J., A matrix-valued solution to Bochner's problem, J. Phys. A: Math. Gen. 34 (2001), 10647-10656.
-
Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002), 350-441, math.RT/0108042.
-
Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions associated to the three dimensional hyperbolic space, Internat. J. Math. 13 (2002), 727-784, math.RT/0203211.
-
Grünbaum F.A., Pacharoni I., Tirao J., An invitation to matrix valued spherical functions: linearization of products in the case of the complex projective space $P_2(\mathbb{C})$, in Modern Signal Processing, MSRI Publications, Vol. 46, Editors D.N. Rockmore, D.M. Healy, Cambridge University Press, Cambridge, 2003, 147-160, math.RT/0202304.
-
Haine L., KP trigonometric solitons and an adelic flag manifold, SIGMA 3 (2007), 015, 15 pages, nlin.SI/0701054.
-
Harnad J., Kasman A. (Editors), The bispectral problem, CRM Proceedings & Lecture Notes, Vol. 14, Amer. Math. Soc., Providence, RI, 1998.
-
Kasman A., Bispectral KP solutions and linearization of Calogero-Moser particle systems, Comm. Math. Phys. 172 (1995), 427-448, hep-th/9412124.
-
Kasman A., Darboux transformations from $n$-KdV to KP, Acta Appl. Math. 49 (1997), 179-197.
-
Kasman A., Spectral difference equations satisfied by KP soliton wavefunctions, Inverse Problems 14 (1998), 1481-1487, solv-int/9811009.
-
Kasman A., Factorization of a matrix differential operator using functions in its kernel, arXiv:1509.05105.
-
Kasman A., Rothstein M., Bispectral Darboux transformations: the generalized Airy case, Phys. D 102 (1997), 159-176, q-alg/9606018.
-
Ruijsenaars S.N.M., Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case, Comm. Math. Phys. 115 (1988), 127-165.
-
Sakhnovich A., Zubelli J.P., Bundle bispectrality for matrix differential equations, Integral Equations Operator Theory 41 (2001), 472-496.
-
Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
-
Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
-
Wilson G., Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177-204.
-
Wilson G., Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), 1-41.
-
Wilson G., Notes on the vector adelic Grassmannian, arXiv:1507.00693.
-
Zubelli J.P., Differential equations in the spectral parameter for matrix differential operators, Phys. D 43 (1990), 269-287.
|
|