|
SIGMA 11 (2015), 093, 16 pages arXiv:1505.02436
https://doi.org/10.3842/SIGMA.2015.093
Post-Lie Algebras and Isospectral Flows
Kurusch Ebrahimi-Fard a, Alexander Lundervold b, Igor Mencattini c and Hans Z. Munthe-Kaas d
a) ICMAT, C/ Nicolás Cabrera 13-15, 28049 Madrid, Spain
b) Department of Computing, Mathematics and Physics, Faculty of Engineering, Bergen University College, Postbox 7030, N-5020 Bergen, Norway
c) Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil
d) Department of Mathematics, University of Bergen, Postbox 7803, N-5020 Bergen, Norway
Received August 13, 2015, in final form November 16, 2015; Published online November 20, 2015
Abstract
In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical $R$-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation.
Key words:
isospectral flow equation; $R$-matrix; Magnus expansion; post-Lie algebra.
pdf (393 kb)
tex (22 kb)
References
-
Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003.
-
Bai C., Guo L., Ni X., Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Comm. Math. Phys. 297 (2010), 553-596, arXiv:0910.3262.
-
Burde D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), 323-357, math-ph/0509016.
-
Cartier P., Vinberg algebras, Lie groups and combinatorics, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 107-126.
-
Casas F., Numerical integration methods for the double-bracket flow, J. Comput. Appl. Math. 166 (2004), 477-495.
-
Casas F., Iserles A., Explicit Magnus expansions for nonlinear equations, J. Phys. A: Math. Gen. 39 (2006), 5445-5461.
-
Chapoton F., Livernet M., Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001 (2001), no. 8, 395-408, math.QA/0002069.
-
Chu M.T., Norris L.K., Isospectral flows and abstract matrix factorizations, SIAM J. Numer. Anal. 25 (1988), 1383-1391.
-
Ebrahimi-Fard K., Guo L., Manchon D., Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion, Comm. Math. Phys. 267 (2006), 821-845, math-ph/0602004.
-
Ebrahimi-Fard K., Lundervold A., Munthe-Kaas H.Z., On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 (2015), 1139-1165, arXiv:1410.6350.
-
Faibusovich L.E., ${\rm QR}$-type factorizations, the Yang-Baxter equation, and an eigenvalue problem of control theory, Linear Algebra Appl. 122-124 (1989), 943-971.
-
Lax P.D., Outline of a theory of the KdV equation, in Recent Mathematical Methods in Nonlinear Wave Propagation (Montecatini Terme, 1994), Lecture Notes in Math., Vol. 1640, Springer, Berlin, 1996, 70-102.
-
Manchon D., A short survey on pre-Lie algebras, in Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, 89-102.
-
Munthe-Kaas H.Z., Lundervold A., On post-Lie algebras, Lie-Butcher series and moving frames, Found. Comput. Math. 13 (2013), 583-613, arXiv:1203.4738.
-
Oudom J.-M., Guin D., On the Lie enveloping algebra of a pre-Lie algebra, J. $K$-Theory 2 (2008), 147-167, math.QA/0404457.
-
Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Quantum $R$-matrices and factorization problems, J. Geom. Phys. 5 (1988), 533-550.
-
Semenov-Tjan-Shanskii M.A., What is a classical $r$-matrix?, Funct. Anal. Appl. 17 (1983), 259-272.
-
Semenov-Tjan-Shanskii M.A., Classical $r$-matrix and quantization, J. Sov. Math. 31 (1985), 3411-3416.
-
Suris Yu.B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, Vol. 219, Birkhäuser Verlag, Basel, 2003.
-
Sweedler M.E., Hopf algebras, Mathematics Lecture Note Series, W.A. Benjamin, Inc., New York, 1969.
-
Vallette B., Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007), 699-725, math.AT/0405312.
-
Watkins D.S., Isospectral flows, SIAM Rev. 26 (1984), 379-391.
|
|