|
SIGMA 12 (2016), 001, 17 pages arXiv:1405.3500
https://doi.org/10.3842/SIGMA.2016.001
Initial Value Problems for Integrable Systems on a Semi-Strip
Alexander L. Sakhnovich
Vienna University of Technology, Institute of Analysis and Scientific Computing, Wiedner Hauptstr. 8, A-1040 Vienna, Austria
Received September 01, 2015, in final form December 28, 2015; Published online January 03, 2016
Abstract
Two important cases, where boundary conditions and solutions of the well-known integrable equations on a semi-strip are uniquely determined by the initial conditions, are rigorously studied in detail. First, the case of rectangular matrix solutions of the defocusing nonlinear Schrödinger equation with quasi-analytic boundary conditions is dealt with. (The result is new even for a scalar nonlinear Schrödinger equation.) Next, a special case of the nonlinear optics ($N$-wave) equation is considered.
Key words:
Weyl-Titchmarsh function; initial condition; quasi-analytic functions; system on a semi-strip; nonlinear Schrödinger equation; nonlinear optics equation.
pdf (428 kb)
tex (29 kb)
References
-
Ablowitz M.J., Haberman R., Resonantly coupled nonlinear evolution equations, J. Math. Phys. 16 (1975), 2301-2305.
-
Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, Vol. 302, Cambridge University Press, Cambridge, 2004.
-
Ashton A.C.L., On the rigorous foundations of the Fokas method for linear elliptic partial differential equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), 1325-1331.
-
Bang T., On quasi-analytic functions, in C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, 249-254.
-
Beals R., Coifman R.R., Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), 39-90.
-
Berezanskii Yu.M., Integration of non-linear difference equations by means of inverse problem technique, Dokl. Akad. Nauk SSSR 281 (1985), 16-19.
-
Berezanskii Yu.M., Gekhtman M.I., Inverse problem of spectral analysis and nonabelian chains of nonlinear equations, Ukrain. Math. J. 42 (1990), 645-658.
-
Beurling A., The collected works of Arne Beurling. Vol. 1. Complex analysis, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989.
-
Bikbaev R.F., Tarasov V.O., Initial-boundary value problem for the nonlinear Schrödinger equation, J. Phys. A: Math. Gen. 24 (1991), 2507-2516.
-
Bona J., Winther R., The Korteweg-de Vries equation, posed in a quarter-plane, SIAM J. Math. Anal. 14 (1983), 1056-1106.
-
Bona J.L., Fokas A.S., Initial-boundary-value problems for linear and integrable nonlinear dispersive partial differential equations, Nonlinearity 21 (2008), T195-T203.
-
Carroll R., Bu Q., Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques, Appl. Anal. 41 (1991), 33-51.
-
Chu C.K., Xiang L.W., Baransky Y., Solitary waves induced by boundary motion, Comm. Pure Appl. Math. 36 (1983), 495-504.
-
Clark S., Gesztesy F., Weyl-Titchmarsh $M$-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354 (2002), 3475-3534, math.SP/0102040.
-
Damanik D., Killip R., Simon B., Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. of Math. 171 (2010), 1931-2010, math.SP/0702388.
-
Degasperis A., Manakov S.V., Santini P.M., Mixed problems for linear and soliton partial differential equations, Theoret. and Math. Phys. 133 (2002), 1475-1489.
-
Fokas A.S., Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys. 230 (2002), 1-39.
-
Fokas A.S., A unified approach to boundary value problems, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 78, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
-
Fokas A.S., Pelloni B. (Editors), Unified transform for boundary value problems. Applications and advances, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.
-
Fritzsche B., Kirstein B., Roitberg I.Ya., Sakhnovich A.L., Weyl theory and explicit solutions of direct and inverse problems for Dirac system with a rectangular matrix potential, Oper. Matrices 7 (2013), 183-196, arXiv:1105.2013.
-
Fritzsche B., Kirstein B., Sakhnovich A.L., Weyl functions of generalized Dirac systems: integral representation, the inverse problem and discrete interpolation, J. Anal. Math. 116 (2012), 17-51, arXiv:1007.4304.
-
Gesztesy F., Mitrea M., Zinchenko M., On Dirichlet-to-Neumann maps and some applications to modified Fredholm determinants, in Methods of Spectral Analysis in Mathematical Physics, Oper. Theory Adv. Appl., Vol. 186, Birkhäuser Verlag, Basel, 2009, 191-215, arXiv:1002.0390.
-
Gesztesy F., Weikard R., Zinchenko M., Initial value problems and Weyl-Titchmarsh theory for Schrödinger operators with operator-valued potentials, Oper. Matrices 7 (2013), 241-283, arXiv:1109.1613.
-
Gohberg I., Kaashoek M.A., Sakhnovich A.L., Scattering problems for a canonical system with a pseudo-exponential potential, Asymptot. Anal. 29 (2002), 1-38.
-
Habibullin I.T., Backlund transformation and integrable boundary-initial value problems, in Nonlinear World, Vol. 1 (Kiev, 1989), World Sci. Publ., River Edge, NJ, 1990, 130-138.
-
Harris B.J., The asymptotic form of the Titchmarsh-Weyl $m$-function associated with a Dirac system, J. London Math. Soc. 31 (1985), 321-330.
-
Holmer J., The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations 18 (2005), 647-668, math.AP/0602152.
-
Kac M., van Moerbeke P., A complete solution of the periodic Toda problem, Proc. Nat. Acad. Sci. USA 72 (1975), 2879-2880.
-
Kaikina E.I., Inhomogeneous Neumann initial-boundary value problem for the nonlinear Schrödinger equation, J. Differential Equations 255 (2013), 3338-3356.
-
Kamvissis S., Shepelsky D., Zielinski L., Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation, J. Nonlinear Math. Phys. 22 (2015), 448-473, arXiv:1412.7636.
-
Kaup D.J., The forced Toda lattice: an example of an almost integrable system, J. Math. Phys. 25 (1984), 277-281.
-
Kaup D.J., Newell A.C., The Goursat and Cauchy problems for the sine-Gordon equation, SIAM J. Appl. Math. 34 (1978), 37-54.
-
Kaup D.J., Steudel H., Recent results on second harmonic generation, in Recent Developments in Integrable Systems and Riemann-Hilbert Problems (Birmingham, AL, 2000), Contemp. Math., Vol. 326, Amer. Math. Soc., Providence, RI, 2003, 33-48.
-
Khryptun V.G., Expansion of functions of quasi-analytic classes in series in polynomials, Ukrain. Math. J. 41 (1989), 569-574.
-
Kostenko A., Sakhnovich A., Teschl G., Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. 2012 (2012), 1699-1747.
-
Kreiss H.-O., Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277-298.
-
Krichever I.M., An analogue of the d'Alembert formula for the equations of a principal chiral field and the sine-Gordon equation, Dokl. Akad. Nauk SSSR 253 (1980), 288-292.
-
Paley R.E.A.C., Wiener N., Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, Vol. 19, Amer. Math. Soc., Providence, RI, 1987.
-
Sabatier P.C., Elbow scattering and inverse scattering applications to LKdV and KdV, J. Math. Phys. 41 (2000), 414-436.
-
Sabatier P.C., Generalized inverse scattering transform applied to linear partial differential equations, Inverse Problems 22 (2006), 209-228.
-
Sakhnovich A.L., The $N$-wave problem on the half-line, Russ. Math. Surv. 46 (1991), no. 4, 198-200.
-
Sakhnovich A.L., The Goursat problem for the sine-Gordon equation, and an inverse spectral problem, Russ. Math. Iz. VUZ (1992), no. 11, 42-52.
-
Sakhnovich A.L., Second harmonic generation: Goursat problem on the semi-strip, Weyl functions and explicit solutions, Inverse Problems 21 (2005), 703-716, nlin.SI/0402055.
-
Sakhnovich A.L., Weyl functions, the inverse problem and special solutions for the system auxiliary to the nonlinear optics equation, Inverse Problems 24 (2008), 025026, 23 pages, arXiv:0708.1112.
-
Sakhnovich A.L., On the compatibility condition for linear systems and a factorization formula for wave functions, J. Differential Equations 252 (2012), 3658-3667.
-
Sakhnovich A.L., Inverse problem for Dirac systems with locally square-summable potentials and rectangular Weyl functions, J. Spectr. Theory 5 (2015), 547-569, arXiv:1401.3605.
-
Sakhnovich A.L., Nonlinear Schrödinger equation in a semi-strip: evolution of the Weyl-Titchmarsh function and recovery of the initial condition and rectangular matrix solutions from the boundary conditions, J. Math. Anal. Appl. 423 (2015), 746-757.
-
Sakhnovich A.L., Sakhnovich L.A., Roitberg I.Ya., Inverse problems and nonlinear evolution equations. Solutions, Darboux matrices and Weyl-Titchmarsh functions, De Gruyter Studies in Mathematics, Vol. 47, De Gruyter, Berlin, 2013.
-
Sakhnovich L.A., Evolution of spectral data, and nonlinear equations, Ukrain. Math. J. 40 (1988), 459-461.
-
Sakhnovich L.A., Integrable nonlinear equations on the semi-axis, Ukrain. Math. J. 43 (1991), 1470-1476.
-
Sakhnovich L.A., The method of operator identities and problems in analysis, St. Petersburg Math. J. 5 (1994), 1-69.
-
Sakhnovich L.A., Spectral theory of canonical differential systems. Method of operator identities, Operator Theory: Advances and Applications, Vol. 107, Birkhäuser Verlag, Basel, 1999.
-
Seeley R.T., Classroom notes: Fubini implies Leibniz implies $F_{yx} = F_{xy}$, Amer. Math. Monthly 68 (1961), 56-57.
-
Simon B., A new approach to inverse spectral theory. I. Fundamental formalism, Ann. of Math. 150 (1999), 1029-1057, math.SP/9906118.
-
Sklyanin E.K., Boundary conditions for integrable equations, Funct. Anal. Appl. 21 (1987), 164-166.
-
Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, Vol. 72, Amer. Math. Soc., Providence, RI, 2000.
-
Ton B.A., Initial boundary value problems for the Korteweg-de Vries equation, J. Differential Equations 25 (1977), 288-309.
-
Zakharov V.E., Manakov S.V., The theory of resonance interaction of wave packets in nonlinear media, Soviet Phys. JETP 69 (1975), 1654-1673.
-
Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Phys. JETP 61 (1971), 62-69.
-
Zakharov V.E., Shabat A.B., Integration of nonlinear equations of mathematical physics by the method of the inverse scattering problem. II, Funct. Anal. Appl. 13 (1979), 166-174.
|
|