|
SIGMA 12 (2016), 011, 24 pages arXiv:1507.06557
https://doi.org/10.3842/SIGMA.2016.011
Quantum Curve and the First Painlevé Equation
Kohei Iwaki a and Axel Saenz b
a) Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan
b) Department of Mathematics, University of California, Davis, CA 95616-8633, USA
Received August 04, 2015, in final form January 22, 2016; Published online January 29, 2016
Abstract
We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation $P_{\rm I}$ gives a WKB solution for the isomonodromy problem for $P_{\rm I}$. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023].
Key words:
quantum curve; first Painlevé equation; topological recursion; isomonodoromic deformation; WKB analysis.
pdf (487 kb)
tex (33 kb)
References
-
Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C., Quantum geometry of refined topological strings, J. High Energy Phys. 2012 (2012), no. 11, 019, 53 pages, arXiv:1105.0630.
-
Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., Topological strings and integrable hierarchies, Comm. Math. Phys. 261 (2006), 451-516, hep-th/0312085.
-
Aoki T., Honda N., Umeta Y., On a construction of general formal solutions for equations of the first Painlevé hierarchy I, Adv. Math. 235 (2013), 496-524.
-
Aoki T., Kawai T., Takei Y., WKB analysis of Painlevé transcendents with a large parameter. II. Multiple-scale analysis of Painlevé transcendents, in Structure of Solutions of Differential Equations (Katata/Kyoto, 1995), World Sci. Publ., River Edge, NJ, 1996, 1-49.
-
Bergére M., Borot G., Eynard B., Rational differential dystems, loop equations, and application to the $q$th reductions of KP, Ann. Henri Poincaré 16 (2015), 2713-2782, arXiv:1312.4237.
-
Bergére M., Eynard B., Determinantal formulae and loop equations, arXiv:0901.3273.
-
Borot G., Eynard B., Tracy-Widom GUE law and symplectic invariants, arXiv:1011.1418.
-
Costin O., Asymptotics and Borel summability, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 141, CRC Press, Boca Raton, FL, 2009.
-
Di Francesco P., Ginsparg P., Zinn-Justin J., $2$D gravity and random matrices, Phys. Rep. 254 (1995), 1-133, hep-th/9306153.
-
Dijkgraaf R., Fuji H., Manabe M., The volume conjecture, perturbative knot invariants, and recursion relations for topological strings, Nuclear Phys. B 849 (2011), 166-211, arXiv:1010.4542.
-
Dumitrescu O., Mulase M., Quantum curves for Hitchin fibrations and the Eynard-Orantin theory, Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022.
-
Dumitrescu O., Mulase M., Quantization of spectral curves for meromorphic Higgs bundles through topological recursion, arXiv:1411.1023.
-
Dunin-Barkowski P., Mulase M., Norbury P., Popolitov A., Shadrin S., Quantum spectral curve for the Gromov-Witten theory of the complex projective line, J. Reine Angew. Math., to appear, arXiv:1312.5336.
-
Eynard B., Topological recursion and quantum curves, Talk given in the workshop ''Quantum curves, Hitchin systems, and the Eynard-Orantin theory'', American Institute of Mathematics, Palo Alto, September 2014.
-
Eynard B., Counting surfaces, Progress in Mathematical Physics, Vol. 70, Birkhäuser, Basel, 2016.
-
Eynard B., Orantin N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), 347-452, math-ph/0702045.
-
Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs, Vol. 128, Amer. Math. Soc., Providence, RI, 2006.
-
Gukov S., Sułkowski P., A-polynomial, B-model, and quantization, J. High Energy Phys. 2012 (2012), no. 2, 070, 57 pages, arXiv:1108.0002.
-
Iwaki K., Marchal O., Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas, arXiv:1411.0875.
-
Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
-
Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
-
Joshi N., Kitaev A.V., On Boutroux's tritronquée solutions of the first Painlevé equation, Stud. Appl. Math. 107 (2001), 253-291.
-
Kamimoto S., Koike T., On the Borel summability of 0-parameter solutions of nonlinear ordinary differential equations, in Recent Development of Micro-Local Analysis for the Theory of Asymptotic Analysis, RIMS Kôkyûroku Bessatsu, Vol. B40, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 191-212.
-
Kapaev A.A., Asymptotic behavior of the solutions of the Painlevé equation of the first kind, Differential Equations 24 (1988), 1107-1115.
-
Kawai T., Takei Y., WKB analysis of Painlevé transcendents with a large parameter. I, Adv. Math. 118 (1996), 1-33.
-
Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Translations of Mathematical Monographs, Vol. 227, Amer. Math. Soc., Providence, RI, 2005.
-
Kawakami H., Nakamura A., Sakai H., Degeneration scheme of 4-dimensional Painlevé-type equations, arXiv:1209.3836.
-
Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
-
Mulase M., Sułkowski P., Spectral curves and the Schrödinger equations for the Eynard-Orantin recursion, arXiv:1210.3006.
-
Nakamura A., Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two, arXiv:1505.00885.
-
Norbury P., Quantum curves and topological recursion, arXiv:1502.04394.
-
Okamoto K., Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 264-268.
-
Olshanetsky M.A., Painlevé type equations and Hitchin systems, in Integrability: the Seiberg-Witten and Whitham Equations (Edinburgh, 1998), Gordon and Breach, Amsterdam, 2000, 153-174, math-ph/9901019.
-
Painlevé P., Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme, Acta Math. 25 (1902), 1-85.
-
Takasaki K., Spectral curves and Whitham equations in isomonodromic problems of Schlesinger type, Asian J. Math. 2 (1998), 1049-1078, solv-int/9704004.
-
Takei Y., An explicit description of the connection formula for the first Painlevé equation, in Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto, 1998), Kyoto University Press, Kyoto, 2000, 271-296.
|
|