|
SIGMA 12 (2016), 018, 14 pages arXiv:1510.08314
https://doi.org/10.3842/SIGMA.2016.018
Contribution to the Special Issue on Analytical Mechanics and Differential Geometry in honour of Sergio Benenti
A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries
Paula Balseiro a and Nicola Sansonetto b
a) Universidade Federal Fluminense, Instituto de Matemática, Rua Mario Santos Braga S/N, 24020-140, Niteroi, Rio de Janeiro, Brazil
b) Università degli Studi di Padova, Dipartimento di Matematica, via Trieste 64, 35121 Padova, Italy
Received October 29, 2015, in final form February 12, 2016; Published online February 21, 2016
Abstract
We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of $\mathcal{M}$-cotangent lift of a vector field on a manifold $Q$ in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579-588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
Key words:
nonholonomic systems; Lie group symmetries; first integrals; gauge symmetries and gauge momenta.
pdf (463 kb)
tex (25 kb)
References
-
Balseiro P., The Jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets, Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091.
-
Balseiro P., Fernandez O.E., Reduction of nonholonomic systems in two stages and Hamiltonization, Nonlinearity 28 (2015), 2873-2912, arXiv:1409.0456.
-
Balseiro P., García-Naranjo L.C., Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal. 205 (2012), 267-310, arXiv:1104.0880.
-
Balseiro P., Sansonetto N., Conserved quantities and Hamiltonization, work in progress.
-
Bates L., Graumann H., MacDonnell C., Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys. 37 (1996), 295-308.
-
Bates L., Śniatycki J., Nonholonomic reduction, Rep. Math. Phys. 32 (1993), 99-115.
-
Benenti S., Meccanica dei sistemi anolonomi, in Complementi alle Lezioni di Meccanica Razionale di T. Levi-Civita e U. Amaldi, Editors E.N.M. Cirillo, G. Maschio, T. Ruggeri, G. Saccomandi, CompoMat, 2012, 213-257.
-
Bloch A.M., Nonholonomic mechanics and control, Interdisciplinary Applied Mathematics, Vol. 24, Springer-Verlag, New York, 2003.
-
Bloch A.M., Krishnaprasad P.S., Marsden J.E., Murray R.M., Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal. 136 (1996), 21-99.
-
Borisov A.V., Mamaev I.S., Chaplygin's ball rolling problem is Hamiltonian, Math. Notes 70 (2001), 720-723.
-
Borisov A.V., Mamaev I.S., Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Regul. Chaotic Dyn. 13 (2008), 443-490.
-
Borisov A.V., Mamaev I.S., Kilin A.A., Rolling of a ball on a surface. New integrals and hierarchy of dynamics, Regul. Chaotic Dyn. 7 (2002), 201-219, nlin.SI/0303024.
-
Cantrijn F., de León M., Marrero J.C., de Diego D.M., Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys. 42 (1998), 25-45.
-
Cortés Monforte J., Geometric, control and numerical aspects of nonholonomic systems, Lecture Notes in Math., Vol. 1793, Springer-Verlag, Berlin, 2002.
-
Crampin M., Mestdag T., The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods Mod. Phys. 8 (2011), 897-923, arXiv:1101.3153.
-
Crampin M., Pirani F.A.E., Applicable differential geometry, London Mathematical Society Lecture Note Series, Vol. 59, Cambridge University Press, Cambridge, 1986.
-
Cushman R., Duistermaat H., Śniatycki J., Geometry of nonholonomically constrained systems, Advanced Series in Nonlinear Dynamics, Vol. 26, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
-
Fassò F., Giacobbe A., Sansonetto N., Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys. 62 (2008), 345-367.
-
Fassò F., Giacobbe A., Sansonetto N., On the number of weakly Noetherian constants of motion of nonholonomic systems, J. Geom. Mech. 1 (2009), 389-416.
-
Fassò F., Giacobbe A., Sansonetto N., Linear weakly Noetherian constants of motion are horizontal gauge momenta, J. Geom. Mech. 4 (2012), 129-136.
-
Fassò F., Ramos A., Sansonetto N., The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn. 12 (2007), 579-588.
-
Fassò F., Sansonetto N., Conservation of `moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., to appear, arXiv:1503.06661.
-
García-Naranjo L., Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere, Discrete Contin. Dyn. Syst. Ser. S 3 (2010), 37-60, arXiv:0808.0854.
-
Giachetta G., First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen. 33 (2000), 5369-5389.
-
Ibort A., de Leon M., Marrero J.C., Martin de Diego D., Dirac brackets in constrained dynamics, Fortschr. Phys. 47 (1999), 459-492.
-
Jotz M., Ratiu T.S., Dirac structures, nonholonomic systems and reduction, Rep. Math. Phys. 69 (2012), 5-56, arXiv:0806.1261.
-
Marle C.-M., Reduction of constrained mechanical systems and stability of relative equilibria, Comm. Math. Phys. 174 (1995), 295-318.
-
Marle C.-M., Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys. 42 (1998), 211-229.
-
Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, Vol. 17, 2nd ed., Springer-Verlag, New York, 1999.
-
Neimark Ju.I., Fufaev N.A., Dynamics of nonholonomic systems, Translations of Mathematical Monographs, Vol. 33, Amer. Math. Soc., Providence, RI, 1972.
-
Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, Vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004.
-
Pars L.A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1968.
-
Śniatycki J., Nonholonomic Noether theorem and reduction of symmetries, Rep. Math. Phys. 42 (1998), 5-23.
-
van der Schaft A.J., Maschke B.M., On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys. 34 (1994), 225-233.
-
Zenkov D.V., Linear conservation laws of nonholonomic systems with symmetry, Discrete Contin. Dyn. Syst. (2003), suppl., 967-976.
|
|