|
SIGMA 12 (2016), 022, 14 pages arXiv:1512.05817
https://doi.org/10.3842/SIGMA.2016.022
Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities
Błażej M. Szablikowski
Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
Received January 11, 2016, in final form February 22, 2016; Published online February 27, 2016
Abstract
The Lax-Sato approach to the hierarchies of Manakov-Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota-Baxter identity. The theory is illustrated by means of the algebra of Laurent series, the related hierarchies are classified and examples, also new, of Manakov-Santini type systems are constructed, including those that are related to the dispersionless modified Kadomtsev-Petviashvili equation and so called dispersionless $r$-th systems.
Key words:
Manakov-Santini hierarchy; Rota-Baxter identity; classical $r$-matrix formalism; generalized Lax hierarchies; integrable $(2+1)$-dimensional systems.
pdf (376 kb)
tex (19 kb)
References
-
Baxter G., An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731-742.
-
Błaszak M., Classical $R$-matrices on Poisson algebras and related dispersionless systems, Phys. Lett A 297 (2002), 191-195.
-
Błaszak M., Szablikowski B.M., Classical $R$-matrix theory of dispersionless systems. I. $(1+1)$-dimensional theory, J. Phys. A: Math. Gen. 35 (2002), 10325-10344, nlin.SI/0211008.
-
Błaszak M., Szablikowski B.M., Classical $R$-matrix theory of dispersionless systems. II. $(2+1)$ dimension theory, J. Phys. A: Math. Gen. 35 (2002), 10345-10364, nlin.SI/0211018.
-
Błaszak M., Szablikowski B.M., Classical $R$-matrix theory for bi-Hamiltonian field systems, J. Phys. A: Math. Theor. 42 (2009), 404002, 35 pages, arXiv:0902.1511.
-
Bogdanov L.V., On a class of multidimensional integrable hierarchies and their reductions, Theoret. and Math. Phys. 160 (2009), 887-893, arXiv:0810.2397.
-
Bogdanov L.V., Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy, J. Phys. A: Math. Theor. 43 (2010), 434008, 8 pages, arXiv:1003.0287.
-
Bogdanov L.V., On a class of reductions of the Manakov-Santini hierarchy connected with the interpolating system, J. Phys. A: Math. Theor. 43 (2010), 115206, 11 pages, arXiv:0910.4004.
-
Bogdanov L.V., Chang J.-H., Chen Y.-T., Generalized dKP: Manakov-Santini hierarchy and its waterbag reduction, arXiv:0810.0556.
-
Chang J.-H., Chen Y.-T., Hodograph solutions for the Manakov-Santini equation, J. Math. Phys. 51 (2010), 042701, 18 pages, arXiv:0904.4595.
-
Dunajski M., A class of Einstein-Weyl spaces associated to an integrable system of hydrodynamic type, J. Geom. Phys. 51 (2004), 126-137, nlin.SI/0311024.
-
Guo L., What is $\ldots$ a Rota-Baxter algebra?, Notices Amer. Math. Soc. 56 (2009), 1436-1437.
-
Guo L., An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, Vol. 4, International Press, Somerville, MA, 2012.
-
Manakov S.V., Santini P.M., Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation, Phys. Lett. A 359 (2006), 613-619, nlin.SI/0604024.
-
Manakov S.V., Santini P.M., A hierarchy of integrable partial differential equations in dimension $2+1$, associated with one-parameter families of vector fields, Theoret. and Math. Phys. 152 (2007), 1004-1011.
-
Manakov S.V., Santini P.M., On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking, J. Phys. A: Math. Theor. 41 (2008), 055204, 23 pages, arXiv:0707.1802.
-
Manakov S.V., Santini P.M., The dispersionless 2D Toda equation: dressing, Cauchy problem, longtime behaviour, implicit solutions and wave breaking, J. Phys. A: Math. Theor. 42 (2009), 095203, 16 pages, arXiv:0810.4676.
-
Manakov S.V., Santini P.M., On the solutions of the second heavenly and Pavlov equations, J. Phys. A: Math. Theor. 42 (2009), 404013, 11 pages, arXiv:0812.3323.
-
Mañas M., On the $r$th dispersionless Toda hierarchy: factorization problem, additional symmetries and some solutions, J. Phys. A: Math. Gen. 37 (2004), 9195-9224, nlin.SI/0404022.
-
Mañas M., $S$-functions, reductions and hodograph solutions of the $r$th dispersionless modified KP and Dym hierarchies, J. Phys. A: Math. Gen. 37 (2004), 11191-11221, nlin.SI/0405028.
-
Martínez Alonso L., Shabat A.B., Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type, Phys. Lett. A 299 (2002), 359-365, nlin.SI/0202008.
-
Martínez Alonso L., Shabat A.B., Towards a theory of differential constraints of a hydrodynamic hierarchy, J. Nonlinear Math. Phys. 10 (2003), 229-242, nlin.SI/0310036.
-
Martínez Alonso L., Shabat A.B., Hydrodynamic reductions and solutions of the universal hierarchy, Theoret. and Math. Phys. 140 (2004), 1073-1085, nlin.SI/0312043.
-
Pavlov M.V., Integrable hydrodynamic chains, J. Math. Phys. 44 (2003), 4134-4156, nlin.SI/0301010.
-
Pavlov M.V., Chang J.-H., Chen Y.-T., Integrability of the Manakov-Santini hierarchy, arXiv:0910.2400.
-
Rota G.C., Baxter algebras and combinatorial identities. I, Bull. Amer. Math. Soc. 75 (1969), 325-329.
-
Rota G.C., Baxter algebras and combinatorial identities. II, Bull. Amer. Math. Soc. 75 (1969), 330-334.
-
Semenov-Tian-Shansky M.A., Integrable systems and factorization problems, in Factorization and Integrable Systems (Faro, 2000), Oper. Theory Adv. Appl., Vol. 141, Birkhäuser, Basel, 2003, 155-218, nlin.SI/0209057.
-
Semenov-Tyan-Shanskii M.A., What is a classical $r$-matrix?, Funct. Anal. Appl. 17 (1983), 259-272.
-
Sergyeyev A., Szablikowski B.M., Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems, Phys. Lett. A 372 (2008), 7016-7023, arXiv:0807.1294.
-
Szablikowski B.M., Classical $r$-matrix like approach to Frobenius manifolds, WDVV equations and flat metrics, J. Phys. A: Math. Theor. 48 (2015), 315203, 47 pages, arXiv:1304.2075.
-
Szablikowski B.M., Błaszak M., Meromorphic Lax representations of $(1+1)$-dimensional multi-Hamiltonian dispersionless systems, J. Math. Phys. 47 (2006), 092701, 23 pages, nlin.SI/0510068.
-
Takasaki K., Takebe T., ${\rm SDiff}(2)$ KP hierarchy, Internat. J. Modern Phys. A 7 (1992), 889-922, hep-th/9112046.
-
Takasaki K., Takebe T., Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7 (1995), 743-808, hep-th/9405096.
|
|