Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 046, 22 pages      arXiv:1601.02263      https://doi.org/10.3842/SIGMA.2016.046
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications

The Asymptotic Expansion of Kummer Functions for Large Values of the $a$-Parameter, and Remarks on a Paper by Olver

Hans Volkmer
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI, 53201, USA

Received January 10, 2016, in final form May 01, 2016; Published online May 06, 2016

Abstract
It is shown that a known asymptotic expansion of the Kummer function $U(a,b,z)$ as $a$ tends to infinity is valid for $z$ on the full Riemann surface of the logarithm. A corresponding result is also proved in a more general setting considered by Olver (1956).

Key words: Kummer functions; asymptotic expansions.

pdf (440 kb)   tex (20 kb)

References

  1. Cohl H.S., Hirtenstein J., Volkmer H., Convergence of Magnus integral addition theorems for confluent hypergeometric functions, arXiv:1601.02566.
  2. Magnus W., Zur Theorie des zylindrisch-parabolischen Spiegels, Z. Physik 118 (1941), 343-356.
  3. Magnus W., Über eine Bezeihung zwischen Whittakerschen Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 1946 (1946), 4-5.
  4. Olver F.W.J., The asymptotic solution of linear differential equations of the second order for large values of a parameter, Philos. Trans. Roy. Soc. London. Ser. A. 247 (1954), 307-327.
  5. Olver F.W.J., The asymptotic solution of linear differential equations of the second order in a domain containing one transition point, Philos. Trans. Roy. Soc. London. Ser. A. 249 (1956), 65-97.
  6. Olver F.W.J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York - London, 1974.
  7. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC, Cambridge University Press, Cambridge, 2010, available at http://dlmf.nist.gov.
  8. Slater L.J., Confluent hypergeometric functions, Cambridge University Press, New York, 1960.
  9. Temme N.M., Remarks on Slater's asymptotic expansions of Kummer functions for large values of the $\alpha$-parameter, Adv. Dyn. Syst. Appl. 8 (2013), 365-377, arXiv:1306.5328.

Previous article  Next article   Contents of Volume 12 (2016)