|
SIGMA 12 (2016), 048, 14 pages arXiv:1602.02724
https://doi.org/10.3842/SIGMA.2016.048
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications
Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
Luc Vinet a and Alexei Zhedanov b
a) Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7 Canada
b) Institute for Physics and Technology, 83114 Donetsk, Ukraine
Received February 08, 2016, in final form May 07, 2016; Published online May 14, 2016; Reference [17] added May 22, 2016
Abstract
We introduce the notion of ''hypergeometric'' polynomials with respect to Newtonian bases. These polynomials are eigenfunctions ($L P_n(x) = \lambda_n P_n(x)$) of some abstract operator $L$ which is 2-diagonal in the Newtonian basis $\varphi_n(x)$: $L \varphi_n(x) = \lambda_n \varphi_n(x) + \tau_n(x) \varphi_{n-1}(x)$ with some coefficients $\lambda_n$, $\tau_n$. We find the necessary and sufficient conditions for the polynomials $P_n(x)$ to be orthogonal. For the special cases where the sets $\lambda_n$ correspond to the classical grids, we find the complete solution to these conditions and observe that it leads to the most general Askey-Wilson polynomials and their special and degenerate classes.
Key words:
abstract hypergeometric operator; orthogonal polynomials; classical orthogonal polynomials.
pdf (353 kb)
tex (18 kb)
[previous version:
pdf (352 kb)
tex (18 kb)]
References
-
Bannai E., Ito T., Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, association schemes.
-
Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York - London - Paris, 1978.
-
Durán A.J., Orthogonal polynomials satisfying higher-order difference equations, Constr. Approx. 36 (2012), 459-486.
-
Everitt W.N., Kwon K.H., Littlejohn L.L., Wellman R., Orthogonal polynomial solutions of linear ordinary differential equations, J. Comput. Appl. Math. 133 (2001), 85-109.
-
Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
-
Geronimus J., The orthogonality of some systems of polynomials, Duke Math. J. 14 (1947), 503-510.
-
Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
-
Leonard D.A., Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13 (1982), 656-663.
-
Okounkov A., On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials, Adv. in Appl. Math. 20 (1998), 395-428.
-
Rains E.M., ${\rm BC}_n$-symmetric polynomials, Transform. Groups 10 (2005), 63-132, math.QA/0112035.
-
Roman S., The theory of the umbral calculus. I, J. Math. Anal. Appl. 87 (1982), 58-115.
-
Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, math.RA/0406555.
-
Terwilliger P., Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2002), 827-888, math.RA/0406577.
-
Terwilliger P., Leonard pairs and the $q$-Racah polynomials, Linear Algebra Appl. 387 (2004), 235-276, math.QA/0306301.
-
Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form, J. Algebra 291 (2005), 1-45, math.RA/0304077.
-
Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition, J. Comput. Appl. Math. 178 (2005), 437-452, math.RA/0306290.
-
Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005), 307-332, math.RA/0306291.
-
Tsujimoto S., Vinet L., Zhedanov A., Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), 2123-2158, arXiv:1106.3512.
-
Vinet L., Zhedanov A., A 'missing' family of classical orthogonal polynomials, J. Phys. A: Math. Theor. 44 (2011), 085201, 16 pages, arXiv:1011.1669.
-
Zhedanov A., Abstract ''hypergeometric'' orthogonal polynomials, arXiv:1401.6754.
|
|