Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 067, 9 pages      arXiv:1604.06286      https://doi.org/10.3842/SIGMA.2016.067

Exchange Relations for Finite Type Cluster Algebras with Acyclic Initial Seed and Principal Coefficients

Salvatore Stella a and Pavel Tumarkin b
a) IN$d$AM - Marie Curie Actions fellow, Università ''La Sapienza'', Roma, Italy
b) Department of Mathematical Sciences, Durham University, UK

Received April 22, 2016, in final form July 06, 2016; Published online July 09, 2016

Abstract
We give an explicit description of all the exchange relations in any finite type cluster algebra with acyclic initial seed and principal coefficients.

Key words: cluster algebras; exchange relations.

pdf (430 kb)   tex (84 kb)

References

  1. Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211, math.RT/0506018.
  2. Chapoton F., Fomin S., Zelevinsky A., Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566, math.CO/0202004.
  3. Felikson A., Shapiro M., Tumarkin P., Cluster algebras and triangulated orbifolds, Adv. Math. 231 (2012), 2953-3002, arXiv:1111.3449.
  4. Felikson A., Tumarkin P., Bases for cluster algebras from orbifolds, arXiv:1511.08023.
  5. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, math.RA/0608367.
  6. Fomin S., Thurston D., Cluster algebras and triangulated surfaces. II. Lambda lengths, arXiv:1210.5569.
  7. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, math.RT/0104151.
  8. Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, math.RA/0208229.
  9. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, math.RA/0602259.
  10. Musiker G., Williams L., Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not. 2013 (2013), 2891-2944, arXiv:1108.3382.
  11. Nakanishi T., Stella S., Diagrammatic description of $c$-vectors and $d$-vectors of cluster algebras of finite type, Electron. J. Combin. 21 (2014), Paper 1.3, 107, arXiv:1210.6299.
  12. Nakanishi T., Zelevinsky A., On tropical dualities in cluster algebras, in Algebraic Groups and Quantum Groups, Contemp. Math., Vol. 565, Amer. Math. Soc., Providence, RI, 2012, 217-226, arXiv:1101.3736.
  13. Reading N., Universal geometric cluster algebras from surfaces, Trans. Amer. Math. Soc. 366 (2014), 6647-6685, arXiv:1209.4095.
  14. Schiffler R., A geometric model for cluster categories of type $D_n$, J. Algebraic Combin. 27 (2008), 1-21, math.RT/0608264.
  15. Stella S., Polyhedral models for generalized associahedra via Coxeter elements, J. Algebraic Combin. 38 (2013), 121-158, arXiv:1111.1657.
  16. Yang S.-W., Zelevinsky A., Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups 13 (2008), 855-895, arXiv:0804.3303.

Previous article  Next article   Contents of Volume 12 (2016)