Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 078, 36 pages      arXiv:1604.03133      https://doi.org/10.3842/SIGMA.2016.078
Contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy

An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles

Doron S. Lubinsky
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 USA

Received April 05, 2016, in final form August 05, 2016; Published online August 10, 2016

Abstract
We survey the current status of universality limits for $m$-point correlation functions in the bulk and at the edge for unitary ensembles, primarily when the limiting kernels are Airy, Bessel, or Sine kernels. In particular, we consider underlying measures on compact intervals, and fixed and varying exponential weights, as well as universality limits for a variety of orthogonal systems. The scope of the survey is quite narrow: we do not consider $\beta$ ensembles for $\beta \neq 2$, nor general Hermitian matrices with independent entries, let alone more general settings. We include some open problems.

Key words: orthogonal polynomials; random matrices; unitary ensembles; correlation functions; Christoffel functions.

pdf (576 kb)   tex (48 kb)

References

  1. Akemann G., Baik J., Di Francesco P. (Editors), The Oxford handbook of random matrix theory, Oxford University Press, Oxford, 2011.
  2. Anderson G.W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Studies in Advanced Mathematics, Vol. 118, Cambridge University Press, Cambridge, 2010.
  3. Avila A., Last Y., Simon B., Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with absolutely continuous spectrum, Anal. PDE 3 (2010), 81-108, arXiv:0810.3277.
  4. Baik J., Kriecherbauer T., Li L.C., McLaughlin K.T.-R., Tomei C. (Editors), Integrable systems and random matrices, Contemp. Math., Vol. 458, Amer. Math. Soc., Providence, RI, 2008.
  5. Baik J., Kriecherbauer T., McLaughlin K.T.-R., Miller P.D., Discrete orthogonal polynomials. Asymptotics and applications, Annals of Mathematics Studies, Vol. 164, Princeton University Press, Princeton, NJ, 2007.
  6. Bleher P., Its A., Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. of Math. 150 (1999), 185-266, math-ph/9907025.
  7. Bleher P., Its A. (Editors), Random matrix models and their applications, Mathematical Sciences Research Institute Publications, Vol. 40, Cambridge University Press, Cambridge, 2001.
  8. Bloom T., Levenberg N., Piazzon F., Wielonsky F., Bernstein-Markov: a survey, Dolomites Res. Notes Approx. 8 (2015), 75-91, arXiv:1512.00739.
  9. Bothner T., Personal communication, 2016.
  10. Breuer J., Sine kernel asymptotics for a class of singular measures, J. Approx. Theory 163 (2011), 1478-1491, arXiv:1011.3159.
  11. Breuer J., Duits M., Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients, J. Amer. Math. Soc., to appear, arXiv:1309.6224.
  12. Breuer J., Duits M., Universality of mesoscopic fluctuations for orthogonal polynomial ensembles, Comm. Math. Phys. 342 (2016), 491-531, arXiv:1411.5205.
  13. Breuer J., Last Y., Simon B., Stability of asymptotics of Christoffel-Darboux kernels, Comm. Math. Phys. 330 (2014), 1155-1178, arXiv:1302.7237.
  14. Danka T., Universality limits for generalized Jacobi measures, arXiv:1605.04275.
  15. Danka T., Zeros of orthogonal polynomials near an algebraic singularity of the measure, in preparation.
  16. Danka T., Totik V., Christoffel functions with power type weights, J. Eur. Math. Soc., to appear, arXiv:1504.03968.
  17. Deckers K., Lubinsky D.S., Christoffel functions and universality limits for orthogonal rational functions, Anal. Appl. (Singap.) 10 (2012), 271-294.
  18. Deift P., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, Vol. 3, New York University, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence, RI, 1999.
  19. Deift P., Gioev D., Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007), 867-910, math-ph/0507023.
  20. Deift P., Gioev D., Random matrix theory: invariant ensembles and universality, Courant Lecture Notes in Mathematics, Vol. 18, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence, RI, 2009.
  21. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425.
  22. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 1491-1552.
  23. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368.
  24. Deift P., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
  25. Dyson F.J., Statistical theory of the energy levels of complex systems. III, J. Math. Phys. 3 (1962), 166-175.
  26. Erdős L., Universality of Wigner random matrices: a survey of recent results, Russian Math. Surveys 66 (2011), 507-626, arXiv:1004.0861.
  27. Findley E., Universality for locally Szegő measures, J. Approx. Theory 155 (2008), 136-154.
  28. Forrester P.J., Log-gases and random matrices, London Mathematical Society Monographs Series, Vol. 34, Princeton University Press, Princeton, NJ, 2010.
  29. Forrester P.J., Snaith N.C., Verbaarschot J.J.M., Developments in random matrix theory, J. Phys. A: Math. Gen. 36 (2003), R1-R10, cond-mat/0303207.
  30. Foulquié Moreno A., Martínez-Finkelshtein A., Sousa V.L., Asymptotics of orthogonal polynomials for a weight with a jump on $[-1,1]$, Constr. Approx. 33 (2011), 219-263, arXiv:0904.2514.
  31. Freud G., Orthogonal polynomials, Pergamon Press/Akademiai Kiado, Budapest, 1971.
  32. Haimi A., Bulk asymptotics for polyanalytic correlation kernels, J. Funct. Anal. 266 (2014), 3083-3133, arXiv:1305.2030.
  33. Haimi A., Hedenmalm H., The polyanalytic Ginibre ensembles, J. Stat. Phys. 153 (2013), 10-47, arXiv:1106.2975.
  34. Karlin S., McGregor J.L., Determinants of orthogonal polynomials, Bull. Amer. Math. Soc. 68 (1962), 204-209.
  35. Kriecherbauer T., McLaughlin K.T.-R., Strong asymptotics of polynomials orthogonal with respect to Freud weights, Int. Math. Res. Not. 1999 (1999), 299-333.
  36. Kriecherbauer T., Schubert K., Schüler K., Venker M., Global asymptotics for the Christoffel-Darboux kernel of random matrix theory, Markov Process. Related Fields 21 (2015), 639-694, arXiv:1401.6772.
  37. Kriecherbauer T., Venker M., Edge statistics for a class of repulsive particle systems, arXiv:1501.07501.
  38. Kroó A., Lubinsky D.S., Christoffel functions and universality in the bulk for multivariate orthogonal polynomials, Canad. J. Math. 65 (2013), 600-620.
  39. Kroó A., Lubinsky D.S., Christoffel functions and universality on the boundary of the ball, Acta Math. Hungar. 140 (2013), 117-133.
  40. Kuijlaars A.B.J., Universality, in The Oxford Handbook of Random Matrix Theory, Editors G. Akemann, J. Baik, P. Di Francesco, Oxford University Press, Oxford, 2011, 103-134, arXiv:1103.5922.
  41. Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$, Adv. Math. 188 (2004), 337-398, math.CA/0111252.
  42. Kuijlaars A.B.J., Vanlessen M., Universality for eigenvalue correlations from the modified Jacobi unitary ensemble, Int. Math. Res. Not. 2002 (2002), 1575-1600, math-ph/0204006.
  43. Kuijlaars A.B.J., Vanlessen M., Universality for eigenvalue correlations at the origin of the spectrum, Comm. Math. Phys. 243 (2003), 163-191, math-ph/0305044.
  44. Levin E., Lubinsky D.S., Orthogonal polynomials for exponential weights, CMS Books in Mathematics, Springer-Verlag, New York, 2001.
  45. Levin E., Lubinsky D.S., Universality limits involving orthogonal polynomials on the unit circle, Comput. Methods Funct. Theory 7 (2007), 543-561.
  46. Levin E., Lubinsky D.S., Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials, J. Approx. Theory 150 (2008), 69-95.
  47. Levin E., Lubinsky D.S., Universality limits in the bulk for varying measures, Adv. Math. 219 (2008), 743-779.
  48. Levin E., Lubinsky D.S., Universality limits for exponential weights, Constr. Approx. 29 (2009), 247-275.
  49. Levin E., Lubinsky D.S., Some equivalent formulations of universality limits in the bulk, in Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemp. Math., Vol. 507, Amer. Math. Soc., Providence, RI, 2010, 177-188.
  50. Levin E., Lubinsky D.S., Universality limits at the soft edge of the spectrum via classical complex analysis, Int. Math. Res. Not. 2010 (2010), 3006-3070.
  51. Levin E., Lubinsky D.S., Universality limits involving orthogonal polynomials on a smooth closed contour, in Complex Analysis and Dynamical Systems VI: Part 2: Complex Analysis, Quasiconformal Mappings, Complex Dynamics, Contemp. Math., Vol. 667, Amer. Math. Soc., Providence, RI, 2016, 187-197.
  52. Levin E., Lubinsky D.S., Universality in measure in the bulk for varying weight, manuscript.
  53. Lubinsky D.S., A new approach to universality limits at the edge of the spectrum, in Integrable Systems and Random Matrices, Contemp. Math., Vol. 458, Amer. Math. Soc., Providence, RI, 2008, 281-290.
  54. Lubinsky D.S., Universality limits at the hard edge of the spectrum for measures with compact support, Int. Math. Res. Not. 2008 (2008), 099, 39 pages.
  55. Lubinsky D.S., Universality limits in the bulk for arbitrary measures on compact sets, J. Anal. Math. 106 (2008), 373-394.
  56. Lubinsky D.S., A new approach to universality limits involving orthogonal polynomials, Ann. of Math. 170 (2009), 915-939, math.CA/0701307.
  57. Lubinsky D.S., Universality limits for random matrices and de Branges spaces of entire functions, J. Funct. Anal. 256 (2009), 3688-3729.
  58. Lubinsky D.S., Universality type limits for Bergman orthogonal polynomials, Comput. Methods Funct. Theory 10 (2010), 135-154.
  59. Lubinsky D.S., Bulk universality holds in measure for compactly supported measures, J. Anal. Math. 116 (2012), 219-253.
  60. Lubinsky D.S., Bulk universality holds pointwise in the mean for compactly supported measures, Michigan Math. J. 61 (2012), 631-649.
  61. Lubinsky D.S., A variational principle for correlation functions for unitary ensembles, with applications, Anal. PDE 6 (2013), 109-130.
  62. Lubinsky D.S., Orthogonal Dirichlet polynomials with arctangent density, J. Approx. Theory 177 (2014), 43-56.
  63. Lubinsky D.S., Nguyen V., Universality limits involving orthogonal polynomials on an arc of the unit circle, Comput. Methods Funct. Theory 13 (2013), 91-106.
  64. Lubinsky D.S., Pritsker I.E., Xie X., Expected number of real zeros for random linear combinations of orthogonal polynomials, Proc. Amer. Math. Soc. 144 (2016), 1631-1642, arXiv:1503.06376.
  65. Maltsev A., Universality limits of a reproducing kernel for a half-line Schrödinger operator and clock behavior of eigenvalues, Comm. Math. Phys. 298 (2010), 461-484, arXiv:0908.1440.
  66. McLaughlin K.T.-R., Miller P.D., The $\overline{\partial}$ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap. 2006 (2006), 48673, 1-77, math.CA/0406484.
  67. McLaughlin K.T.-R., Miller P.D., The $\overline{\partial}$ steepest descent method on the real line with varying weights, Int. Math. Res. Not. 2008 (2008), rnn075, 66 pages, arXiv:0805.1980.
  68. Mehta M.L., L'emploi del polynomes orthogonaux pour calculer certain determinants, Rapport S. PH (Saclay 658), 1960.
  69. Mehta M.L., On the statistical properties of the level-spacings in nuclear spectra, Nuclear Phys. 18 (1960), 395-419.
  70. Mehta M.L., Random matrices, Pure and Applied Mathematics (Amsterdam), Vol. 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004.
  71. Mehta M.L., Gaudin M., On the density of eigenvalues of a random matrix, Nuclear Phys. 18 (1960), 420-427.
  72. Mhaskar H.N., Introduction to the theory of weighted polynomial approximation, Series in Approximations and Decompositions, Vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
  73. Mhaskar H.N., Saff E.B., Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
  74. Mitkovski M., Universality limits for entire functions, Proc. Amer. Math. Soc. 141 (2013), 3119-3124.
  75. Olver F.W.J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York - London, 1974.
  76. Pastur L., Shcherbina M., Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Stat. Phys. 86 (1997), 109-147.
  77. Pritsker I.E., Xie X., Expected number of real zeros for random Freud orthogonal polynomials, J. Math. Anal. Appl. 429 (2015), 1258-1270, arXiv:1505.04762.
  78. Riser R., Universality in Gaussian random normal matrices, arXiv:1312.0068.
  79. Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Berlin, 1997.
  80. Simon B., Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, Vol. 54, Amer. Math. Soc., Providence, RI, 2005.
  81. Simon B., The Christoffel-Darboux kernel, in Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Proc. Sympos. Pure Math., Vol. 79, Amer. Math. Soc., Providence, RI, 2008, 295-335.
  82. Simon B., Two extensions of Lubinsky's universality theorem, J. Anal. Math. 105 (2008), 345-362.
  83. Simon B., Szegő's theorem and its descendants: spectral theory for $L^{2}$ perturbations of orthogonal polynomials, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.
  84. Simon B., Real analysis: a comprehensive course in analysis, Part 1, Amer. Math. Soc., Providence, RI, 2015.
  85. Sinclair C.D., Yattselev M.L., Universality for ensembles of matrices with potential theoretic weights on domains with smooth boundary, J. Approx. Theory 164 (2012), 682-708, arXiv:1108.3052.
  86. Stahl H., Totik V., General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, Vol. 43, Cambridge University Press, Cambridge, 1992.
  87. Stenger F., Numerical methods based on sinc and analytic functions, Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York, 1993.
  88. Suetin P.K., Fundamental properties of polynomials orthogonal on a contour, Russ. Math. Surv. 21 (1966), no. 2, 35-83.
  89. Tao T., Topics in random matrix theory, Graduate Studies in Mathematics, Vol. 132, Amer. Math. Soc., Providence, RI, 2012.
  90. Tao T., Vu V., Random matrices: the universality phenomenon for Wigner ensembles, in Modern Aspects of Random Matrix Theory, Proc. Sympos. Appl. Math., Vol. 72, Amer. Math. Soc., Providence, RI, 2014, 121-172, arXiv:1202.0068.
  91. Totik V., Asymptotics for Christoffel functions for general measures on the real line, J. Anal. Math. 81 (2000), 283-303.
  92. Totik V., Asymptotics for Christoffel functions with varying weights, Adv. in Appl. Math. 25 (2000), 322-351.
  93. Totik V., Universality and fine zero spacing on general sets, Ark. Mat. 47 (2009), 361-391.
  94. Totik V., Universality under Szegő's condition, Canad. Math. Bull. 59 (2016), 211-224.
  95. Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, hep-th/9211141.
  96. Vanlessen M., Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory, Constr. Approx. 25 (2007), 125-175, math.CA/0504604.
  97. Xu S.-X., Zhao Y.-Q., Zhou J.-R., Universality for eigenvalue correlations from the unitary ensemble associated with a family of singular weights, J. Math. Phys. 52 (2011), 093302, 14 pages.
  98. Zhang D., Gaussian fluctuations of eigenvalues in log-gas ensemble: Bulk case I, Acta Math. Sin. (Engl. Ser.) 31 (2015), 1487-1500.

Previous article  Next article   Contents of Volume 12 (2016)