|
SIGMA 12 (2016), 087, 17 pages arXiv:1512.02386
https://doi.org/10.3842/SIGMA.2016.087
Contribution to the Special Issue on Analytical Mechanics and Differential Geometry in honour of Sergio Benenti
Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart
Sandra Carillo ab, Mauro Lo Schiavo a and Cornelia Schiebold cd
a) Dipartimento ''Scienze di Base e Applicate per l'Ingegneria'', Sapienza - Università di Roma, 16, Via A. Scarpa, 00161 Rome, Italy
b) I.N.F.N. - Sez. Roma1, Gr. IV - Mathematical Methods in NonLinear Physics, Rome, Italy
c) Department of Science Education and Mathematics, Mid Sweden University, S-851 70 Sundsvall, Sweden
d) Instytut Matematyki, Uniwersytet Jana Kochanowskiego w Kielcach, Poland
Received December 08, 2015, in final form August 24, 2016; Published online August 30, 2016
Abstract
Classes of third order non-Abelian evolution equations linked to that of Korteweg-de Vries-type are investigated and their connections represented in a non-commutative Bäcklund chart, generalizing results in [Fuchssteiner B., Carillo S., Phys. A 154 (1989), 467-510]. The recursion operators are shown to be hereditary, thereby allowing the results to be extended to hierarchies. The present study is devoted to operator nonlinear evolution equations: general results are presented. The implied applications referring to finite-dimensional cases will be considered separately.
Key words:
.
pdf (506 kb)
tex (28 kb)
References
-
Aden H., Carl B., On realizations of solutions of the KdV equation by determinants on operator ideals, J. Math. Phys. 37 (1996), 1833-1857.
-
Athorne C., Fordy A., Generalised KdV and MKdV equations associated with symmetric spaces, J. Phys. A: Math. Gen. 20 (1987), 1377-1386.
-
Bateman H., The lift and drag functions for an elastic fluid in two-dimensional irrotational flow, Proc. Nat. Acad. Sci. USA 24 (1938), 246-251.
-
Bateman H., The transformation of partial differential equations, Quart. Appl. Math. 1 (1944), 281-296.
-
Calogero F., Degasperis A., Nonlinear evolution equations solvable by the inverse spectral transform. II, Nuovo Cimento B 39 (1977), 1-54.
-
Calogero F., Degasperis A., Spectral transform and solitons. Vol. I. Tools to solve and investigate nonlinear evolution equations, Studies in Mathematics and its Applications, Vol. 13, North-Holland Publishing Co., Amsterdam - New York, 1982.
-
Carillo S., Nonlinear evolution equations: Bäcklund transformations and Bäcklund charts, Acta Appl. Math. 122 (2012), 93-106.
-
Carillo S., Fuchssteiner B., The abundant symmetry structure of hierarchies of nonlinear equations obtained by reciprocal links, J. Math. Phys. 30 (1989), 1606-1613.
-
Carillo S., Lo Schiavo M., Schiebold C., Recursion operators admitted by non-Abelian Burgers equations: some remarks, arXiv:1606.07270.
-
Carillo S., Rogers C., Bäcklund charts for the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies, in Nonlinear Evolutions (Balaruc-les-Bains, 1987), World Sci. Publ., Teaneck, NJ, 1988, 57-73.
-
Carillo S., Schiebold C., Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods, J. Math. Phys. 50 (2009), 073510, 14 pages.
-
Carillo S., Schiebold C., A non-commutative operator-hierarchy of Burgers equations and Bäcklund transformations, in Applied and Industrial Mathematics in Italy III, Ser. Adv. Math. Appl. Sci., Vol. 82, World Sci. Publ., Hackensack, NJ, 2010, 175-185.
-
Carillo S., Schiebold C., Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: noncommutative soliton solutions, J. Math. Phys. 52 (2011), 053507, 21 pages.
-
Carillo S., Schiebold C., On the recursion operator for the noncommutative Burgers hierarchy, J. Nonlinear Math. Phys. 19 (2012), 1250003, 11 pages.
-
Carl B., Schiebold C., Nonlinear equations in soliton physics and operator ideals, Nonlinearity 12 (1999), 333-364.
-
Carl B., Schiebold C., Ein direkter Ansatz zur Untersuchung von Solitonengleichungen, Jahresber. Deutsch. Math.-Verein. 102 (2000), 102-148.
-
Cole J.D., On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951), 225-236.
-
Depireux D.A., Schiff J., On UrKdV and UrKP, Lett. Math. Phys. 33 (1995), 99-111, solv-int/9402004.
-
Fokas A.S., Fuchssteiner B., Bäcklund transformations for hereditary symmetries, Nonlinear Anal. 5 (1981), 423-432.
-
Fuchssteiner B., Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Anal. 3 (1979), 849-862.
-
Fuchssteiner B., The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems, Progr. Theoret. Phys. 68 (1982), 1082-1104.
-
Fuchssteiner B., Solitons in interaction, Progr. Theoret. Phys. 78 (1987), 1022-1050.
-
Fuchssteiner B., Carillo S., Soliton structure versus singularity analysis: third-order completely integrable nonlinear differential equations in $1+1$-dimensions, Phys. A 154 (1989), 467-510.
-
Fuchssteiner B., Carillo S., The action-angle transformation for soliton equations, Phys. A 166 (1990), 651-675.
-
Fuchssteiner B., Chowdhury A.R., A new approach to the quantum KdV, Chaos Solitons Fractals 5 (1995), 2345-2355.
-
Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981), 47-66.
-
Fuchssteiner B., Oevel W., The bi-Hamiltonian structure of some nonlinear fifth- and seventh-order differential equations and recursion formulas for their symmetries and conserved covaria, J. Math. Phys. 23 (1982), 358-363.
-
Fuchssteiner B., Schulze T., Carillo S., Explicit solutions for the Harry Dym equation, J. Phys. A: Math. Gen. 25 (1992), 223-230.
-
Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Mathematical Physics Studies, Vol. 26, Springer, Dordrecht, 2005.
-
Guo B.Y., Carillo S., Infiltration in soils with prescribed boundary concentration, Acta Math. Appl. Sinica 6 (1990), 365-369.
-
Guo B.Y., Rogers C., On Harry-Dym equation and its solution, Sci. China Ser. A 32 (1989), 283-295.
-
Gürses M., Karasu A., Sokolov V.V., On construction of recursion operators from Lax representation, J. Math. Phys. 40 (1999), 6473-6490, solv-int/9909003.
-
Hopf E., The partial differential equation $u_t+uu_x=\mu u_{xx}$, Comm. Pure Appl. Math. 3 (1950), 201-230.
-
Khalilov F.A., Khruslov E.Ya., Matrix generalisation of the modified Korteweg-de Vries equation, Inverse Problems 6 (1990), 193-204.
-
Kupershmidt B.A., On a group of automorphisms of the noncommutative Burgers hierarchy, J. Nonlinear Math. Phys. 12 (2005), 539-549.
-
Levi D., Ragnisco O., Bruschi M., Continuous and discrete matrix Burgers' hierarchies, Nuovo Cimento B 74 (1983), 33-51.
-
Liu Q.P., Athorne C., Comment on ''Matrix generalisation of the modified Korteweg-de Vries equation'', Inverse Problems 7 (1991), 783-785.
-
Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
-
Marchenko V.A., Nonlinear equations and operator algebras, Mathematics and its Applications (Soviet Series), Vol. 17, D. Reidel Publishing Co., Dordrecht, 1988.
-
Oevel W., Carillo S., Squared eigenfunction symmetries for soliton equations. I, J. Math. Anal. Appl. 217 (1998), 161-178.
-
Oevel W., Carillo S., Squared eigenfunction symmetries for soliton equations. II, J. Math. Anal. Appl. 217 (1998), 179-199.
-
Oevel W., Rogers C., Gauge transformations and reciprocal links in $2+1$ dimensions, Rev. Math. Phys. 5 (1993), 299-330.
-
Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), 1212-1215.
-
Olver P.J., Sokolov V.V., Integrable evolution equations on associative algebras, Comm. Math. Phys. 193 (1998), 245-268.
-
Rogers C., Reciprocal relations in non-steady one-dimensional gasdynamics, Z. Angew. Math. Phys. 19 (1968), 58-63.
-
Rogers C., Ames W.F., Nonlinear boundary value problems in science and engineering, Mathematics in Science and Engineering, Vol. 183, Academic Press, Inc., Boston, MA, 1989.
-
Rogers C., Carillo S., On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies, Phys. Scripta 36 (1987), 865-869.
-
Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
-
Rogers C., Shadwick W.F., Bäcklund transformations and their applications, Mathematics in Science and Engineering, Vol. 161, Academic Press, Inc., New York - London, 1982.
-
Schiebold C., From the non-abelian to the scalar two-dimensional Toda lattice, Glasg. Math. J. 47 (2005), 177-189.
-
Schiebold C., Noncommutative AKNS systems and multisoliton solutions to the matrix sine-Gordon equation, Discrete Contin. Dyn. Syst. 2009 (2009), 678-690.
-
Schiebold C., Cauchy-type determinants and integrable systems, Linear Algebra Appl. 433 (2010), 447-475.
-
Schiebold C., The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions, J. Phys. A: Math. Theor. 43 (2010), 434030, 18 pages.
-
Schiebold C., Structural properties of the noncommutative KdV recursion operator, J. Math. Phys. 52 (2011), 113504, 16 pages.
-
Schiff J., Symmetries of KdV and loop groups, solv-int/9606004.
-
Svinolupov S.I., Sokolov V.V., Vector-matrix generalizations of classical integrable equations, Theoret. and Math. Phys. 100 (1994), 959-962.
-
Weiss J., On classes of integrable systems and the Painlevé property, J. Math. Phys. 25 (1984), 13-24.
-
Wilson G., On the quasi-Hamiltonian formalism of the KdV equation, Phys. Lett. A 132 (1988), 445-450.
|
|