|
SIGMA 13 (2017), 004, 56 pages arXiv:1606.01069
https://doi.org/10.3842/SIGMA.2017.004
The Geometry of Almost Einstein $(2,3,5)$ Distributions
Katja Sagerschnig a and Travis Willse b
a) Politecnico di Torino, Dipartimento di Scienze Matematiche, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b) Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Received July 26, 2016, in final form January 13, 2017; Published online January 19, 2017
Abstract
We analyze the classic problem of existence of Einstein metrics in a given conformal structure for the class of conformal structures inducedf Nurowski's construction by (oriented) $(2, 3, 5)$ distributions. We characterize in two ways such conformal structures that admit an almost Einstein scale: First, they are precisely the oriented conformal structures $\mathbf{c}$ that are induced by at least two distinct oriented $(2, 3, 5)$ distributions; in this case there is a $1$-parameter family of such distributions that induce $\mathbf{c}$. Second, they are characterized by the existence of a holonomy reduction to ${\rm SU}(1, 2)$, ${\rm SL}(3, {\mathbb R})$, or a particular semidirect product ${\rm SL}(2, {\mathbb R}) \ltimes Q_+$, according to the sign of the Einstein constant of the corresponding metric. Via the curved orbit decomposition formalism such a reduction partitions the underlying manifold into several submanifolds and endows each ith a geometric structure. This establishes novel links between $(2, 3, 5)$ distributions and many other geometries - several classical geometries among them - including: Sasaki-Einstein geometry and its paracomplex and null-complex analogues in dimension $5$; Kähler-Einstein geometry and its paracomplex and null-complex analogues, Fefferman Lorentzian conformal structures, and para-Fefferman neutral conformal structures in dimension $4$; CR geometry and the point geometry of second-order ordinary differential equations in dimension $3$; and projective geometry in dimension $2$. We describe a generalized Fefferman construction that builds from a $4$-dimensional Kähler-Einstein or para-Kähler-Einstein structure a family of $(2, 3, 5)$ distributions that induce the same (Einstein) conformal structure. We exploit some of these links to construct new examples, establishing the existence of nonflat almost Einstein $(2, 3, 5)$ conformal structures for which the Einstein constant is positive and negative.
Key words:
$(2,3,5)$ distribution; almost Einstein; conformal geometry; conformal Killing field; CR structure; curved orbit decomposition; Fefferman construction; ${\rm G}_2$; holonomy reduction; Kähler-Einstein; Sasaki-Einstein; second-order ordinary differential equation.
pdf (862 kb)
tex (83 kb)
References
-
Agrachev A.A., Sachkov Yu.L., An intrinsic approach to the control of rolling bodies, in Proceedings of the 38th IEEE Conference on Decision and Control, Vol. 5 (Phoenix, Arizona, USA, December 7-10, 1999), IEEE Control Systems Society, Piscataway, NJ, 1999, 431-435.
-
An D., Nurowski P., Twistor space for rolling bodies, Comm. Math. Phys. 326 (2014), 393-414, arXiv:1210.3536.
-
Armstrong S., Projective holonomy. II. Cones and complete classifications, Ann. Global Anal. Geom. 33 (2008), 137-160, math.DG/0602621.
-
Bailey T.N., Eastwood M.G., Gover A.R., Thomas's structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), 1191-1217.
-
Blair D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Vol. 509, Springer-Verlag, Berlin - New York, 1976.
-
Bor G., Lamoneda L.H., Nurowski P., The dancing metric, ${\rm G}_2$-symmetry and projective rolling, arXiv:1506.00104.
-
Bor G., Montgomery R., ${\rm G}_2$ and the rolling distribution, Enseign. Math. 55 (2009), 157-196, math.DG/0612469.
-
Bor G., Nurowski P., Private communication.
-
Brinkmann H.W., Riemann spaces conformal to Einstein spaces, Math. Ann. 91 (1924), 269-278.
-
Brinkmann H.W., Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145.
-
Brown R.B., Gray A., Vector cross products, Comment. Math. Helv. 42 (1967), 222-236.
-
Bryant R.L., Some remarks on ${\rm G}_2$-structures, in Proceedings of Gökova Geometry-Topology Conference 2005, Editors S. Akbulut, T. Onder, R.J. Stern, Gökova Geometry/Topology Conference (GGT), Gökova, 2006, 75-109, math.DG/0305124.
-
Bryant R.L., Hsu L., Rigidity of integral curves of rank $2$ distributions, Invent. Math. 114 (1993), 435-461.
-
Calderbank D.M.J., Diemer T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67-103, math.DG/0001158.
-
Čap A., Infinitesimal automorphisms and deformations of parabolic geometries, J. Eur. Math. Soc. 10 (2008), 415-437, math.DG/0508535.
-
Čap A., Gover A.R., A holonomy characterisation of Fefferman spaces, Ann. Global Anal. Geom. 38 (2010), 399-412, math.DG/0611939.
-
Čap A., Gover A.R., Hammerl M., Holonomy reductions of Cartan geometries and curved orbit decompositions, Duke Math. J. 163 (2014), 1035-1070, arXiv:1103.4497.
-
Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
-
Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math. 154 (2001), 97-113, math.DG/0001164.
-
Cartan É., Sur la structure des groupes simples finis et continus, C. R. Acad. Sci. Paris 113 (1893), 784-786.
-
Cartan É., Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192.
-
Chudecki A., On some examples of para-Hermite and para-Kähler Einstein spaces with $\Lambda \neq 0$, J. Geom. Phys. 112 (2017), 175-196, arXiv:1602.02913.
-
Cortés V., Leistner T., Schäfer L., Schulte-Hengesbach F., Half-flat structures and special holonomy, Proc. Lond. Math. Soc. 102 (2011), 113-158, arXiv:0907.1222.
-
Curry S., Gover A.R., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv:1412.7559.
-
Doubrov B., Komrakov B., The geometry of second-order ordinary differential equations, arXiv:1602.00913.
-
Doubrov B., Kruglikov B., On the models of submaximal symmetric rank 2 distributions in 5D, Differential Geom. Appl. 35 (2014), suppl., 314-322, arXiv:1311.7057.
-
Dunajski M., Przanowski M., Null Kähler structures, symmetries and integrability, in Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebański, Editors H. García-Compeán, B. Mielnik, M. Montesinos, M. Przanowski, World Sci. Publ., Hackensack, NJ, 2006, 147-155, gr-qc/0310005.
-
Engel F., Sur un groupe simple à quatorze paramètres, C. R. Acad. Sci. Paris 116 (1893), 786-788.
-
Fefferman C., Graham C.R., The ambient metric, Annals of Mathematics Studies, Vol. 178, Princeton University Press, Princeton, NJ, 2012, arXiv:0710.0919.
-
Fefferman C.L., Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103 (1976), 395-416, correction, Ann. of Math. 104 (1976), 393-394.
-
Fox D.J.F., Contact projective structures, Indiana Univ. Math. J. 54 (2005), 1547-1598, math.DG/0402332.
-
Gover A.R., Almost conformally Einstein manifolds and obstructions, in Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 247-260, math.DG/0412393.
-
Gover A.R., Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys. 60 (2010), 182-204, arXiv:0803.3510.
-
Gover A.R., Macbeth H.R., Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry, Differential Geom. Appl. 33 (2014), suppl., 44-69, arXiv:1212.6286.
-
Gover A.R., Neusser K., Willse T., Sasaki and Kähler structures and their compactifications via projective geometry, in preparation.
-
Gover A.R., Nurowski P., Obstructions to conformally Einstein metrics in $n$ dimensions, J. Geom. Phys. 56 (2006), 450-484, math.DG/0405304.
-
Gover A.R., Panai R., Willse T., Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy, Indiana Univ. Math. J., to appear, arXiv:1403.1959.
-
Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split ${\rm G}_2$, J. Differential Geom. 92 (2012), 463-505, arXiv:1109.3504.
-
Haantjes J., Wrona W., Über konformeuklidische und Einsteinsche Räume gerader Dimension, Proc. Nederl. Akad. Wetensch. 42 (1939), 626-636.
-
Hammerl M., Natural prolongations of BGG-operators, Ph.D. Thesis, Universität Wien, 2009.
-
Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA 5 (2009), 081, 29 pages, arXiv:0908.0483.
-
Hammerl M., Sagerschnig K., The twistor spinors of generic 2- and 3-distributions, Ann. Global Anal. Geom. 39 (2011), 403-425, arXiv:1004.3632.
-
Hammerl M., Sagerschnig K., Šilhan J., Taghavi-Chabert A., Zádník V., A projective-to-conformal Fefferman-type construction, arXiv:1510.03337.
-
Kath I., Killing spinors on pseudo-Riemannian manifolds, Humboldt-Universität Berlin, Habilitationsschrift, 1999.
-
Kath I., $G_{2(2)}^*$-structures on pseudo-Riemannian manifolds, J. Geom. Phys. 27 (1998), 155-177.
-
Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
-
Kozameh C.N., Newman E.T., Tod K.P., Conformal Einstein spaces, Gen. Relativity Gravitation 17 (1985), 343-352.
-
Kruglikov B., The D., The gap phenomenon in parabolic geometries, J. Reine Angew. Math., to appear, arXiv:1303.1307.
-
Leistner T., Nurowski P., Ambient metrics with exceptional holonomy, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 407-436, arXiv:0904.0186.
-
Leitner F., Conformal Killing forms with normalisation condition, Rend. Circ. Mat. Palermo (2) Suppl. (2005), 279-292, math.DG/0406316.
-
Leitner F., A remark on unitary conformal holonomy, in Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., Vol. 144, Editors M.G. Eastwood, W. Miller, Springer, New York, 2008, 445-460, math.DG/0604393.
-
Nurowski P., Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19-49, math.DG/0406400.
-
Nurowski P., Sparling G.A., Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations, Classical Quantum Gravity 20 (2003), 4995-5016, math.DG/0306331.
-
Sagerschnig K., Split octonions and generic rank two distributions in dimension five, Arch. Math. (Brno) 42 (2006), suppl., 329-339.
-
Sagerschnig K., Willse T., The almost Einstein operator for $(2, 3, 5)$ distributions, in preparation.
-
Sagerschnig K., Willse T., Fefferman constructions for Kähler surfaces, in preparation.
-
Sasaki S., On a relation between a Riemannian space which is conformal with Einstein spaces and normal conformally connected spaces whose groups of holonomy fix a point or a hypersphere, Tensor 5 (1942), 66-72.
-
Schouten J.A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Die Grundlehren der Mathematischen Wissenschaften, Vol. 10, 2nd ed., Springer-Verlag, Berlin - Göttingen - Heidelberg, 1954.
-
Schulte-Hengesbach F., Half-flat structure on Lie groups, Ph.D. Thesis, Universität Hamburg, 2010.
-
Semmelmann U., Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), 503-527, math.DG/0206117.
-
Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, Vol. 166, Springer-Verlag, New York, 1997.
-
Susskind L., The world as a hologram, J. Math. Phys. 36 (1995), 6377-6396, hep-th/9409089.
-
Szekeres P., Spaces conformal to a class of spaces in general relativity, Proc. Roy. Soc. Ser. A 274 (1963), 206-212.
-
Willse T., Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy, Differential Geom. Appl. 33 (2014), suppl., 81-111, arXiv:1302.7163.
-
Wolf J.A., Isotropic manifolds of indefinite metric, Comment. Math. Helv. 39 (1964), 21-64.
-
Wong Y.-C., Some Einstein spaces with conformally separable fundamental tensors, Trans. Amer. Math. Soc. 53 (1943), 157-194.
-
Yano K., Conformal and concircular geometries in Einstein spaces, Proc. Imp. Acad. Tokyo 19 (1943), 444-453.
|
|