Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 004, 56 pages      arXiv:1606.01069      https://doi.org/10.3842/SIGMA.2017.004

The Geometry of Almost Einstein $(2,3,5)$ Distributions

Katja Sagerschnig a and Travis Willse b
a) Politecnico di Torino, Dipartimento di Scienze Matematiche, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b) Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Received July 26, 2016, in final form January 13, 2017; Published online January 19, 2017

Abstract
We analyze the classic problem of existence of Einstein metrics in a given conformal structure for the class of conformal structures inducedf Nurowski's construction by (oriented) $(2, 3, 5)$ distributions. We characterize in two ways such conformal structures that admit an almost Einstein scale: First, they are precisely the oriented conformal structures $\mathbf{c}$ that are induced by at least two distinct oriented $(2, 3, 5)$ distributions; in this case there is a $1$-parameter family of such distributions that induce $\mathbf{c}$. Second, they are characterized by the existence of a holonomy reduction to ${\rm SU}(1, 2)$, ${\rm SL}(3, {\mathbb R})$, or a particular semidirect product ${\rm SL}(2, {\mathbb R}) \ltimes Q_+$, according to the sign of the Einstein constant of the corresponding metric. Via the curved orbit decomposition formalism such a reduction partitions the underlying manifold into several submanifolds and endows each ith a geometric structure. This establishes novel links between $(2, 3, 5)$ distributions and many other geometries - several classical geometries among them - including: Sasaki-Einstein geometry and its paracomplex and null-complex analogues in dimension $5$; Kähler-Einstein geometry and its paracomplex and null-complex analogues, Fefferman Lorentzian conformal structures, and para-Fefferman neutral conformal structures in dimension $4$; CR geometry and the point geometry of second-order ordinary differential equations in dimension $3$; and projective geometry in dimension $2$. We describe a generalized Fefferman construction that builds from a $4$-dimensional Kähler-Einstein or para-Kähler-Einstein structure a family of $(2, 3, 5)$ distributions that induce the same (Einstein) conformal structure. We exploit some of these links to construct new examples, establishing the existence of nonflat almost Einstein $(2, 3, 5)$ conformal structures for which the Einstein constant is positive and negative.

Key words: $(2,3,5)$ distribution; almost Einstein; conformal geometry; conformal Killing field; CR structure; curved orbit decomposition; Fefferman construction; ${\rm G}_2$; holonomy reduction; Kähler-Einstein; Sasaki-Einstein; second-order ordinary differential equation.

pdf (862 kb)   tex (83 kb)

References

  1. Agrachev A.A., Sachkov Yu.L., An intrinsic approach to the control of rolling bodies, in Proceedings of the 38th IEEE Conference on Decision and Control, Vol. 5 (Phoenix, Arizona, USA, December 7-10, 1999), IEEE Control Systems Society, Piscataway, NJ, 1999, 431-435.
  2. An D., Nurowski P., Twistor space for rolling bodies, Comm. Math. Phys. 326 (2014), 393-414, arXiv:1210.3536.
  3. Armstrong S., Projective holonomy. II. Cones and complete classifications, Ann. Global Anal. Geom. 33 (2008), 137-160, math.DG/0602621.
  4. Bailey T.N., Eastwood M.G., Gover A.R., Thomas's structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), 1191-1217.
  5. Blair D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Vol. 509, Springer-Verlag, Berlin - New York, 1976.
  6. Bor G., Lamoneda L.H., Nurowski P., The dancing metric, ${\rm G}_2$-symmetry and projective rolling, arXiv:1506.00104.
  7. Bor G., Montgomery R., ${\rm G}_2$ and the rolling distribution, Enseign. Math. 55 (2009), 157-196, math.DG/0612469.
  8. Bor G., Nurowski P., Private communication.
  9. Brinkmann H.W., Riemann spaces conformal to Einstein spaces, Math. Ann. 91 (1924), 269-278.
  10. Brinkmann H.W., Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145.
  11. Brown R.B., Gray A., Vector cross products, Comment. Math. Helv. 42 (1967), 222-236.
  12. Bryant R.L., Some remarks on ${\rm G}_2$-structures, in Proceedings of Gökova Geometry-Topology Conference 2005, Editors S. Akbulut, T. Onder, R.J. Stern, Gökova Geometry/Topology Conference (GGT), Gökova, 2006, 75-109, math.DG/0305124.
  13. Bryant R.L., Hsu L., Rigidity of integral curves of rank $2$ distributions, Invent. Math. 114 (1993), 435-461.
  14. Calderbank D.M.J., Diemer T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67-103, math.DG/0001158.
  15. Čap A., Infinitesimal automorphisms and deformations of parabolic geometries, J. Eur. Math. Soc. 10 (2008), 415-437, math.DG/0508535.
  16. Čap A., Gover A.R., A holonomy characterisation of Fefferman spaces, Ann. Global Anal. Geom. 38 (2010), 399-412, math.DG/0611939.
  17. Čap A., Gover A.R., Hammerl M., Holonomy reductions of Cartan geometries and curved orbit decompositions, Duke Math. J. 163 (2014), 1035-1070, arXiv:1103.4497.
  18. Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
  19. Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math. 154 (2001), 97-113, math.DG/0001164.
  20. Cartan É., Sur la structure des groupes simples finis et continus, C. R. Acad. Sci. Paris 113 (1893), 784-786.
  21. Cartan É., Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192.
  22. Chudecki A., On some examples of para-Hermite and para-Kähler Einstein spaces with $\Lambda \neq 0$, J. Geom. Phys. 112 (2017), 175-196, arXiv:1602.02913.
  23. Cortés V., Leistner T., Schäfer L., Schulte-Hengesbach F., Half-flat structures and special holonomy, Proc. Lond. Math. Soc. 102 (2011), 113-158, arXiv:0907.1222.
  24. Curry S., Gover A.R., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv:1412.7559.
  25. Doubrov B., Komrakov B., The geometry of second-order ordinary differential equations, arXiv:1602.00913.
  26. Doubrov B., Kruglikov B., On the models of submaximal symmetric rank 2 distributions in 5D, Differential Geom. Appl. 35 (2014), suppl., 314-322, arXiv:1311.7057.
  27. Dunajski M., Przanowski M., Null Kähler structures, symmetries and integrability, in Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebański, Editors H. García-Compeán, B. Mielnik, M. Montesinos, M. Przanowski, World Sci. Publ., Hackensack, NJ, 2006, 147-155, gr-qc/0310005.
  28. Engel F., Sur un groupe simple à quatorze paramètres, C. R. Acad. Sci. Paris 116 (1893), 786-788.
  29. Fefferman C., Graham C.R., The ambient metric, Annals of Mathematics Studies, Vol. 178, Princeton University Press, Princeton, NJ, 2012, arXiv:0710.0919.
  30. Fefferman C.L., Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103 (1976), 395-416, correction, Ann. of Math. 104 (1976), 393-394.
  31. Fox D.J.F., Contact projective structures, Indiana Univ. Math. J. 54 (2005), 1547-1598, math.DG/0402332.
  32. Gover A.R., Almost conformally Einstein manifolds and obstructions, in Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 247-260, math.DG/0412393.
  33. Gover A.R., Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys. 60 (2010), 182-204, arXiv:0803.3510.
  34. Gover A.R., Macbeth H.R., Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry, Differential Geom. Appl. 33 (2014), suppl., 44-69, arXiv:1212.6286.
  35. Gover A.R., Neusser K., Willse T., Sasaki and Kähler structures and their compactifications via projective geometry, in preparation.
  36. Gover A.R., Nurowski P., Obstructions to conformally Einstein metrics in $n$ dimensions, J. Geom. Phys. 56 (2006), 450-484, math.DG/0405304.
  37. Gover A.R., Panai R., Willse T., Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy, Indiana Univ. Math. J., to appear, arXiv:1403.1959.
  38. Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split ${\rm G}_2$, J. Differential Geom. 92 (2012), 463-505, arXiv:1109.3504.
  39. Haantjes J., Wrona W., Über konformeuklidische und Einsteinsche Räume gerader Dimension, Proc. Nederl. Akad. Wetensch. 42 (1939), 626-636.
  40. Hammerl M., Natural prolongations of BGG-operators, Ph.D. Thesis, Universität Wien, 2009.
  41. Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA 5 (2009), 081, 29 pages, arXiv:0908.0483.
  42. Hammerl M., Sagerschnig K., The twistor spinors of generic 2- and 3-distributions, Ann. Global Anal. Geom. 39 (2011), 403-425, arXiv:1004.3632.
  43. Hammerl M., Sagerschnig K., Šilhan J., Taghavi-Chabert A., Zádník V., A projective-to-conformal Fefferman-type construction, arXiv:1510.03337.
  44. Kath I., Killing spinors on pseudo-Riemannian manifolds, Humboldt-Universität Berlin, Habilitationsschrift, 1999.
  45. Kath I., $G_{2(2)}^*$-structures on pseudo-Riemannian manifolds, J. Geom. Phys. 27 (1998), 155-177.
  46. Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
  47. Kozameh C.N., Newman E.T., Tod K.P., Conformal Einstein spaces, Gen. Relativity Gravitation 17 (1985), 343-352.
  48. Kruglikov B., The D., The gap phenomenon in parabolic geometries, J. Reine Angew. Math., to appear, arXiv:1303.1307.
  49. Leistner T., Nurowski P., Ambient metrics with exceptional holonomy, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 407-436, arXiv:0904.0186.
  50. Leitner F., Conformal Killing forms with normalisation condition, Rend. Circ. Mat. Palermo (2) Suppl. (2005), 279-292, math.DG/0406316.
  51. Leitner F., A remark on unitary conformal holonomy, in Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., Vol. 144, Editors M.G. Eastwood, W. Miller, Springer, New York, 2008, 445-460, math.DG/0604393.
  52. Nurowski P., Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19-49, math.DG/0406400.
  53. Nurowski P., Sparling G.A., Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations, Classical Quantum Gravity 20 (2003), 4995-5016, math.DG/0306331.
  54. Sagerschnig K., Split octonions and generic rank two distributions in dimension five, Arch. Math. (Brno) 42 (2006), suppl., 329-339.
  55. Sagerschnig K., Willse T., The almost Einstein operator for $(2, 3, 5)$ distributions, in preparation.
  56. Sagerschnig K., Willse T., Fefferman constructions for Kähler surfaces, in preparation.
  57. Sasaki S., On a relation between a Riemannian space which is conformal with Einstein spaces and normal conformally connected spaces whose groups of holonomy fix a point or a hypersphere, Tensor 5 (1942), 66-72.
  58. Schouten J.A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Die Grundlehren der Mathematischen Wissenschaften, Vol. 10, 2nd ed., Springer-Verlag, Berlin - Göttingen - Heidelberg, 1954.
  59. Schulte-Hengesbach F., Half-flat structure on Lie groups, Ph.D. Thesis, Universität Hamburg, 2010.
  60. Semmelmann U., Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), 503-527, math.DG/0206117.
  61. Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, Vol. 166, Springer-Verlag, New York, 1997.
  62. Susskind L., The world as a hologram, J. Math. Phys. 36 (1995), 6377-6396, hep-th/9409089.
  63. Szekeres P., Spaces conformal to a class of spaces in general relativity, Proc. Roy. Soc. Ser. A 274 (1963), 206-212.
  64. Willse T., Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy, Differential Geom. Appl. 33 (2014), suppl., 81-111, arXiv:1302.7163.
  65. Wolf J.A., Isotropic manifolds of indefinite metric, Comment. Math. Helv. 39 (1964), 21-64.
  66. Wong Y.-C., Some Einstein spaces with conformally separable fundamental tensors, Trans. Amer. Math. Soc. 53 (1943), 157-194.
  67. Yano K., Conformal and concircular geometries in Einstein spaces, Proc. Imp. Acad. Tokyo 19 (1943), 444-453.

Previous article  Next article   Contents of Volume 13 (2017)