|
SIGMA 13 (2017), 009, 28 pages arXiv:1609.00882
https://doi.org/10.3842/SIGMA.2017.009
Contribution to the Special Issue on Combinatorics of Moduli Spaces: Integrability, Cohomology, Quantisation, and Beyond
$q$-Difference Kac-Schwarz Operators in Topological String Theory
Kanehisa Takasaki a and Toshio Nakatsu b
a) Department of Mathematics, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
b) Institute of Fundamental Sciences, Setsunan University, 17-8 Ikeda Nakamachi, Neyagawa, Osaka 572-8508, Japan
Received September 08, 2016, in final form February 17, 2017; Published online February 21, 2017
Abstract
The perspective of Kac-Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector $|W\rangle$ in the fermionic Fock space that represents a point $W$ of the Sato Grassmannian. $|W\rangle$ is generated from the vacuum vector $|0\rangle$ by an operator $g$ on the Fock space. $g$ determines an operator $G$ on the space $V = \mathbb{C}((x))$ of Laurent series in which $W$ is realized as a linear subspace. $G$ generates an admissible basis $\{\Phi_j(x)\}_{j=0}^\infty$ of $W$. $q$-difference analogues $A$, $B$ of Kac-Schwarz operators are defined with the aid of $G$. $\Phi_j(x)$'s satisfy the linear equations $A\Phi_j(x) = q^j\Phi_j(x)$, $B\Phi_j(x) = \Phi_{j+1}(x)$. The lowest equation $A\Phi_0(x) = \Phi_0(x)$ reproduces the quantum mirror curve in the authors' previous work.
Key words:
topological vertex; mirror symmetry; quantum curve; $q$-difference equation; KP hierarchy; Kac-Schwarz operator.
pdf (547 kb)
tex (75 kb)
References
-
Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., Topological strings and integrable hierarchies, Comm. Math. Phys. 261 (2006), 451-516, hep-th/0312085.
-
Aganagic M., Klemm A., Mariño M., Vafa C., The topological vertex, Comm. Math. Phys. 254 (2005), 425-478, hep-th/0305132.
-
Alexandrov A., Enumerative geometry, tau-functions and Heisenberg-Virasoro algebra, Comm. Math. Phys. 338 (2015), 195-249, arXiv:1404.3402.
-
Alexandrov A., Lewanski D., Shadrin S., Ramifications of Hurwitz theory, KP integrability and quantum curves, J. High Energy Phys. 2016 (2016), no. 5, 124, 31 pages, arXiv:1512.07026.
-
Alexandrov A., Mironov A., Morozov A., Natanzon S., On KP-integrable Hurwitz functions, J. High Energy Phys. 2014 (2014), no. 11, 080, 31 pages, arXiv:1405.1395.
-
Bonelli G., Tanzini A., Zhao J., Vertices, vortices & interacting surface operators, J. High Energy Phys. 2012 (2012), no. 6, 178, 22 pages, arXiv:1102.0184.
-
Bouchard V., Klemm A., Mariño M., Pasquetti S., Remodeling the B-model, Comm. Math. Phys. 287 (2009), 117-178, arXiv:0709.1453.
-
Bouchard V., Mariño M., Hurwitz numbers, matrix models and enumerative geometry, in From Hodge Theory to Integrability and TQFT tt*-Geometry, Proc. Sympos. Pure Math., Vol. 78, Amer. Math. Soc., Providence, RI, 2008, 263-283, arXiv:0709.1458.
-
Bryan J., Karp D., The closed topological vertex via the Cremona transform, J. Algebraic Geom. 14 (2005), 529-542, math.AG/0311208.
-
Dijkgraaf R., Hollands L., Sułkowski P., Quantum curves and $\mathcal D$-modules, J. High Energy Phys. 2009 (2009), no. 11, 047, 59 pages, arXiv:0810.4157.
-
Dijkgraaf R., Hollands L., Sułkowski P., Vafa C., Supersymmetric gauge theories, intersecting branes and free fermions, J. High Energy Phys. 2008 (2008), no. 2, 106, 57 pages, arXiv:0709.4446.
-
Dijkgraaf R., Vafa C., Matrix models, topological strings, and supersymmetric gauge theories, Nuclear Phys. B 644 (2002), 3-20, hep-th/0206255.
-
Dijkgraaf R., Verlinde H., Verlinde E., Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity, Nuclear Phys. B 348 (1991), 435-456.
-
Dimofte T., Gukov S., Hollands L., Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011), 225-287, arXiv:1006.0977.
-
Douglas M.R., Strings in less than one dimension and the generalized KdV hierarchies, Phys. Lett. B 238 (1990), 176-180.
-
Eguchi T., Kanno H., Geometric transitions, Chern-Simons gauge theory and Veneziano type amplitudes, Phys. Lett. B 585 (2004), 163-172, hep-th/0312223.
-
Eynard B., Mulase M., Safnuk B., The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011), 629-670, arXiv:0907.5224.
-
Eynard B., Orantin N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), 347-452, math-ph/0702045.
-
Faddeev L.D., Kashaev R.M., Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434, hep-th/9310070.
-
Faddeev L.D., Volkov A.Yu., Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B 315 (1993), 311-318, hep-th/9307048.
-
Fang B., Liu C.-C.M., Zong Z., All genus mirror symmetry for toric Calabi-Yau 3-orbifolds, in String-Math 2014, Proc. Sympos. Pure Math., Vol. 93, Amer. Math. Soc., Providence, RI, 2016, 1-19, arXiv:1310.4818.
-
Fukuma M., Kawai H., Nakayama R., Infinite-dimensional Grassmannian structure of two-dimensional quantum gravity, Comm. Math. Phys. 143 (1992), 371-403.
-
Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
-
Guay-Paquet M., Harnad J., Generating functions for weighted Hurwitz numbers, arXiv:1408.6766.
-
Guay-Paquet M., Harnad J., 2D Toda $\tau$-functions as combinatorial generating functions, Lett. Math. Phys. 105 (2015), 827-852, arXiv:1405.6303.
-
Gukov S., Sułkowski P., A-polynomial, B-model, and quantization, J. High Energy Phys. 2008 (2012), no. 2, 070, 57 pages, arXiv:1108.0002.
-
Harnad J., Multi-species quantum Hurwitz numbers, arXiv:1410.8817.
-
Harnad J., Quantum Hurwitz numbers and Macdonald polynomials, J. Math. Phys. 57 (2016), 113505, 16 pages, arXiv:1504.03311.
-
Harnad J., Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview, in String-Math 2014, Proc. Sympos. Pure Math., Vol. 93, Amer. Math. Soc., Providence, RI, 2016, 289-333, arXiv:1504.03408.
-
Harnad J., Orlov A.Yu., Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths, Comm. Math. Phys. 338 (2015), 267-284, arXiv:1407.7800.
-
Hollands L., Topological strings and quantum curves, Ph.D. Thesis, University of Amsterdam, 2009, arXiv:0911.3413.
-
Hyun S., Yi S.-H., Non-compact topological branes on conifold, J. High Energy Phys. 2006 (2006), no. 11, 075, 34 pages, hep-th/0609037.
-
Iqbal A., Kashani-Poor A.-K., The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006), 317-343, hep-th/0410174.
-
Kac V., Schwarz A., Geometric interpretation of the partition function of $2$D gravity, Phys. Lett. B 257 (1991), 329-334.
-
Kashani-Poor A.-K., The wave function behavior of the open topological string partition function on the conifold, J. High Energy Phys. 2007 (2007), 004, 47 pages, hep-th/0606112.
-
Kashani-Poor A.-K., Phase space polarization and the topological string: a case study, Modern Phys. Lett. A 23 (2008), 3199-3214, arXiv:0812.0687.
-
Kharchev S., Marshakov A., Mironov A., Morozov A., Generalized Kazakov-Migdal-Kontsevich model: group theory aspects, Internat. J. Modern Phys. A 10 (1995), 2015-2051, hep-th/9312210.
-
Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
-
Kozçaz C., Pasquetti S., Wyllard N., A & B model approaches to surface operators and Toda theories, J. High Energy Phys. 2010 (2010), no. 8, 042, 42 pages, arXiv:1004.2025.
-
Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
-
Mariño M., Open string amplitudes and large order behavior in topological string theory, J. High Energy Phys. 2008 (2008), no. 3, 060, 34 pages, hep-th/0612127.
-
Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.
-
Moore G., Geometry of the string equations, Comm. Math. Phys. 133 (1990), 261-304.
-
Mulase M., Shadrin S., Spitz L., The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures, Commun. Number Theory Phys. 7 (2013), 125-143, arXiv:1301.5580.
-
Mulase M., Zhang N., Polynomial recursion formula for linear Hodge integrals, Commun. Number Theory Phys. 4 (2010), 267-293, arXiv:0908.2267.
-
Nagao K., Non-commutative Donaldson-Thomas theory and vertex operators, Geom. Topol. 15 (2011), 1509-1543, arXiv:0910.5477.
-
Nakatsu T., Takasaki K., Melting crystal, quantum torus and Toda hierarchy, Comm. Math. Phys. 285 (2009), 445-468, arXiv:0710.5339.
-
Okounkov A., Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), 447-453, math.AG/0004128.
-
Okounkov A., Pandharipande R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560, math.AG/0204305.
-
Okounkov A., Reshetikhin N., Vafa C., Quantum Calabi-Yau and classical crystals, in The Unity of Mathematics, Progr. Math., Vol. 244, Editors P. Etingof, V. Retakh, I.M. Singer, Birkhäuser Boston, Boston, MA, 2006, 597-618, hep-th/0309208.
-
Orlov A.Yu., Shcherbin D.M., Hypergeometric solutions of soliton equations, Theoret. and Math. Phys. 128 (2001), 906-926.
-
Orlov A.Yu., Scherbin D.M., Multivariate hypergeometric functions as $\tau$-functions of Toda lattice and Kadomtsev-Petviashvili equation, Phys. D 152/153 (2001), 51-65, math-ph/0003011.
-
Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), Editors H. Fujita, P.D. Lax, G. Strang, North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
-
Schwarz A., On solutions to the string equation, Modern Phys. Lett. A 6 (1991), 2713-2725.
-
Schwarz A., Quantum curves, Comm. Math. Phys. 338 (2015), 483-500, arXiv:1401.1574.
-
Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
-
Sułkowski P., Crystal model for the closed topological vertex geometry, J. High Energy Phys. 2006 (2006), no. 12, 030, 21 pages, hep-th/0606055.
-
Sułkowski P., Wall-crossing, free fermions and crystal melting, Comm. Math. Phys. 301 (2011), 517-562, arXiv:0910.5485.
-
Takasaki K., Generalized string equations for double Hurwitz numbers, J. Geom. Phys. 62 (2012), 1135-1156, arXiv:1012.5554.
-
Takasaki K., Remarks on partition functions of topological string theory on generalized conifolds, arXiv:1301.4548.
-
Takasaki K., Nakatsu T., Open string amplitudes of closed topological vertex, J. Phys. A: Math. Theor. 49 (2016), 025201, 28 pages, arXiv:1507.07053.
-
Taki M., Surface operator, bubbling Calabi-Yau and AGT relation, J. High Energy Phys. 2011 (2011), no. 7, 047, 33 pages, arXiv:1007.2524.
-
Witten E., Two-dimensional gravity and intersection theory on moduli space, in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 243-310.
-
Young B., Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds (with an appendix by J. Bryan), Duke Math. J. 152 (2010), 115-153, arXiv:0802.3948.
-
Zabrodin A., Laplacian growth in a channel and Hurwitz numbers, J. Phys. A: Math. Theor. 46 (2013), 185203, 23 pages, arXiv:1212.6729.
-
Zhou J., Quantum mirror curves for $\mathbb{C}^3$ and the resolved conifold, arXiv:1207.0598.
-
Zhou J., Emergent geometry of KP hierarchy, II, arXiv:1512.03196.
|
|