Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 011, 35 pages      arXiv:1401.2143      https://doi.org/10.3842/SIGMA.2017.011
Contribution to the Special Issue on Recent Advances in Quantum Integrable Systems

Drinfeld J Presentation of Twisted Yangians

Samuel Belliard a and Vidas Regelskis bc
a) Institut de Physique Théorique, Orme des Merisiers batiment 774, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
b) Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
c) Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK

Received May 24, 2016, in final form February 21, 2017; Published online March 01, 2017

Abstract
We present a quantization of a Lie coideal structure for twisted half-loop algebras of finite-dimensional simple complex Lie algebras. We obtain algebra closure relations of twisted Yangians in Drinfeld J presentation for all symmetric pairs of simple Lie algebras and for simple twisted even half-loop Lie algebras. We provide the explicit form of the closure relations for twisted Yangians in Drinfeld J presentation for the ${\mathfrak{sl}}_3$ Lie algebra.

Key words: coideal; coisotropic subalgebra; deformation; Manin triple; twisted Yangians.

pdf (616 kb)   tex (46 kb)

References

  1. Araki S., On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1-34.
  2. Arnaudon D., Avan J., Crampé N., Doikou A., Frappat L., Ragoucy E., General boundary conditions for the $sl(N)$ and $sl(M|N)$ open spin chains, J. Stat. Mech. Theory Exp. 2004 (2004), P08005, 35 pages, math-ph/0406021.
  3. Baseilhac P., Deformed Dolan-Grady relations in quantum integrable models, Nuclear Phys. B 709 (2005), 491-521, hep-th/0404149.
  4. Baseilhac P., An integrable structure related with tridiagonal algebras, Nuclear Phys. B 705 (2005), 605-619, math-ph/0408025.
  5. Baseilhac P., Belliard S., Generalized $q$-Onsager algebras and boundary affine Toda field theories, Lett. Math. Phys. 93 (2010), 213-228, arXiv:0906.1215.
  6. Baseilhac P., Belliard S., The central extension of the reflection equations and an analog of Miki's formula, J. Phys. A: Math. Theor. 44 (2011), 415205, 13 pages, arXiv:1104.1591.
  7. Baseilhac P., Belliard S., The half-infinite XXZ chain in Onsager's approach, Nuclear Phys. B 873 (2013), 550-584, arXiv:1211.6304.
  8. Baxter R.J., Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193-228.
  9. Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.
  10. Belliard S., Crampé N., Coideal algebras from twisted Manin triples, J. Geom. Phys. 62 (2012), 2009-2023, arXiv:1202.2312.
  11. Belliard S., Fomin V., Generalized $q$-Onsager algebras and dynamical $K$-matrices, J. Phys. A: Math. Theor. 45 (2012), 025201, 17 pages, arXiv:1106.1317.
  12. Bonneau P., Flato M., Gerstenhaber M., Pinczon G., The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations, Comm. Math. Phys. 161 (1994), 125-156.
  13. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  14. Chen H., Guay N., Ma X., Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type $BC$, Trans. Amer. Math. Soc. 366 (2014), 2517-2574.
  15. Cherednik I.V., Factorizing particles on a half line, and root systems, Theoret. and Math. Phys. 61 (1984), 977-983.
  16. Delius G.W., MacKay N.J., Short B.J., Boundary remnant of Yangian symmetry and the structure of rational reflection matrices, Phys. Lett. B 522 (2001), 335-344, hep-th/0109115.
  17. Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 32 (1985), 254-258.
  18. Drinfeld V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.
  19. Drinfeld V.G., On some unsolved problems in quantum group theory, in Quantum Groups (Leningrad, 1990), Lecture Notes in Math., Vol. 1510, Springer, Berlin, 1992, 1-8.
  20. Etingof P., Kazhdan D., Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), 1-41, q-alg/9506005.
  21. Etingof P., Kazhdan D., Quantization of Poisson algebraic groups and Poisson homogeneous spaces, in Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 935-946, q-alg/9510020.
  22. Faddeev L.D., Reshetikhin N.Yu., Integrability of the principal chiral field model in $1+1$ dimension, Ann. Physics 167 (1986), 227-256.
  23. Faddeev L.D., Takhtadzhyan L.A., Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model, J. Sov. Math. 24 (1984), 241-267.
  24. Guay N., Regelskis V., Twisted Yangians for symmetric pairs of types B, C, D, Math. Z. 284 (2016), 131-166, arXiv:1407.5247.
  25. Guay N., Regelskis V., Wendlandt C., Twisted Yangians of small rank, J. Math. Phys. 57 (2016), 041703, 28 pages, arXiv:1602.01418.
  26. Guay N., Regelskis V., Wendlandt C., Representations of twisted Yangians of types B, C, D: I, Selecta Math. (N.S.), to appear, arXiv:1605.06733.
  27. Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, Inc., New York - London, 1978.
  28. Kolb S., Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395-469, arXiv:1207.6036.
  29. Koornwinder T.H., Askey-Wilson polynomials as zonal spherical functions on the ${\rm SU}(2)$ quantum group, SIAM J. Math. Anal. 24 (1993), 795-813.
  30. Letzter G., Coideal subalgebras and quantum symmetric pairs, in New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge University Press, Cambridge, 2002, 117-165, math.QA/0103228.
  31. Levendorskiǐ S.Z., On PBW bases for Yangians, Lett. Math. Phys. 27 (1993), 37-42.
  32. MacKay N.J., Rational $K$-matrices and representations of twisted Yangians, J. Phys. A: Math. Gen. 35 (2002), 7865-7876, math.QA/0205155.
  33. MacKay N.J., Introduction to Yangian symmetry in integrable field theory, Internat. J. Modern Phys. A 20 (2005), 7189-7217, hep-th/0409183.
  34. MacKay N., Regelskis V., Yangian symmetry of the $Y=0$ maximal giant graviton, J. High Energy Phys. 2010 (2010), no. 12, 076, 17 pages, arXiv:1010.3761.
  35. MacKay N., Regelskis V., Achiral boundaries and the twisted Yangian of the D5-brane, J. High Energy Phys. 2011 (2011), no. 8, 019, 22 pages, arXiv:1105.4128.
  36. Molev A.I., Representations of twisted Yangians, Lett. Math. Phys. 26 (1992), 211-218.
  37. Molev A.I., Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998), 5559-5600, q-alg/9711022.
  38. Molev A.I., Nazarov M.L., Olshanskii G.I., Yangians and classical Lie algebras, Russ. Math. Surv. 51 (1996), 205-282, hep-th/9409025.
  39. Molev A.I., Ragoucy E., Representations of reflection algebras, Rev. Math. Phys. 14 (2002), 317-342, math.QA/0107213.
  40. Molev A.I., Ragoucy E., Sorba P., Coideal subalgebras in quantum affine algebras, Rev. Math. Phys. 15 (2003), 789-822, math.QA/0208140.
  41. Ohayon J., Quantization of coisotropic subalgebras in complex semisimple Lie algebras, arXiv:1005.1371.
  42. Olshanskii G.I., Twisted Yangians and infinite-dimensional classical Lie algebras, in Quantum Groups (Leningrad, 1990), Lecture Notes in Math., Vol. 1510, Springer, Berlin, 1992, 104-119.
  43. Regelskis V., Reflection algebras for ${\mathfrak{sl}}(2)$ and ${\mathfrak{gl}}(1|1)$, arXiv:1206.6498.
  44. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  45. Sklyanin E.K., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen. 21 (1988), 2375-2389.
  46. Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  47. Yang C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315.
  48. Zambon M., A construction for coisotropic subalgebras of Lie bialgebras, J. Pure Appl. Algebra 215 (2011), 411-419, arXiv:0810.5160.

Previous article  Next article   Contents of Volume 13 (2017)