Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 012, 23 pages      arXiv:1612.00348      https://doi.org/10.3842/SIGMA.2017.012
Contribution to the Special Issue on Combinatorics of Moduli Spaces: Integrability, Cohomology, Quantisation, and Beyond

Irregular Conformal States and Spectral Curve: Irregular Matrix Model Approach

Chaiho Rim
Department of Physics, Sogang University, Seoul 121-742, Korea

Received December 02, 2016, in final form February 27, 2017; Published online March 03, 2017

Abstract
We present recent developments of irregular conformal conformal states. Irregular vertex operators and their adjoint in a new formalism are used to define the irregular conformal states and their inner product instead of using the colliding limit procedure. Free field formalism can be augmented by screening operators which provide more degrees of freedom. The inner product is conveniently given as the partition function of an irregular matrix model. (Deformed) spectral curve is the loop equation of the matrix model at Nekrasov-Shatashivili limit. We present the details of analytic structure of the spectral curve for Virasoso symmetry and its extensions, $W$-symmetry and super-symmetry.

Key words: irregular state; irregular conformal block; random matrix model; spectral curve.

pdf (457 kb)   tex (31 kb)

References

  1. Alday L.F., Gaiotto D., Tachikawa Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197, arXiv:0906.3219.
  2. Argyres P.C., Douglas M.R., New phenomena in ${\rm SU}(3)$ supersymmetric gauge theory, Nuclear Phys. B 448 (1995), 93-126, hep-th/9505062.
  3. Belavin V., Feigin B., Super Liouville conformal blocks from ${\mathcal N}=2$ ${\rm SU}(2)$ quiver gauge theories, J. High Energy Phys. 2011 (2011), no. 7, 079, 17 pages, arXiv:1105.5800.
  4. Bonelli G., Maruyoshi K., Tanzini A., Quantum Hitchin systems via $\beta$-deformed matrix models, arXiv:1104.4016.
  5. Bonelli G., Maruyoshi K., Tanzini A., Gauge theories on ALE space and super Liouville correlation functions, Lett. Math. Phys. 101 (2012), 103-124, arXiv:1107.4609.
  6. Bonelli G., Maruyoshi K., Tanzini A., Wild quiver gauge theories, J. High Energy Phys. 2012 (2012), no. 2, 031, 31 pages, arXiv:1112.1691.
  7. Chekhov L.O., Logarithmic potential beta-ensembles and Feynman graphs, arXiv:1009.5940.
  8. Chekhov L.O., Eynard B., Marchal O., Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach, Theoret. and Math. Phys. 166 (2011), 141-185, arXiv:1009.6007.
  9. Choi S.K., Rim C., Parametric dependence of irregular conformal block, J. High Energy Phys. 2014 (2014), no. 4, 106, 30 pages, arXiv:1312.5535.
  10. Choi S.K., Rim C., Irregular matrix model with $\mathcal W$ symmetry, J. Phys. A: Math. Theor. 49 (2016), 075201, 15 pages, arXiv:1506.02421.
  11. Choi S.K., Rim C., Zhang H., Virasoro irregular conformal block and beta deformed random matrix model, Phys. Lett. B 742 (2015), 50-54, arXiv:1411.4453.
  12. Choi S.K., Rim C., Zhang H., Irregular conformal block, spectral curve and flow equations, J. High Energy Phys. 2016 (2016), no. 3, 118, 41 pages, arXiv:1510.09060.
  13. Ciosmak P., Hadasz L., Manabe M., Sułkowski P., Super-quantum curves from super-eigenvalue models, J. High Energy Phys. 2016 (2016), no. 10, 044, 56 pages, arXiv:1608.02596.
  14. Dijkgraaf R., Vafa C., On geometry and matrix models, Nuclear Phys. B 644 (2002), 21-39, hep-th/0207106.
  15. Dijkgraaf R., Vafa C., Toda Theories, matrix models, topological strings, and ${\mathcal N}=2$ gauge systems, arXiv:0909.2453.
  16. Eguchi T., Maruyoshi K., Penner type matrix model and Seiberg-Witten theory, J. High Energy Phys. 2010 (2010), no. 2, 022, 21 pages, arXiv:0911.4797.
  17. Felińska E., Jaskólski Z., Kosztołowicz M., Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states, J. Math. Phys. 53 (2012), 033504, 16 pages, arXiv:1112.4453.
  18. Gaiotto D., Asymptotically free ${\mathcal N}=2$ theories and irregular conformal blocks, J. Phys. Conf. Ser. 462 (2013), 012014, 5 pages, arXiv:0908.0307.
  19. Gaiotto D., Teschner J., Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, J. High Energy Phys. 2012 (2012), no. 12, 050, 79 pages, arXiv:1203.1052.
  20. Gomis J., Le Floch B., M2-brane surface operators and gauge theory dualities in Toda, J. High Energy Phys. 2016 (2016), no. 4, 183, 111 pages, arXiv:1407.1852.
  21. Itoyama H., Oota T., Method of generating $q$-expansion coefficients for conformal block and ${\mathcal N}=2$ Nekrasov function by $\beta$-deformed matrix model, Nuclear Phys. B 838 (2010), 298-330, arXiv:1003.2929.
  22. Kanno H., Maruyoshi K., Shiba S., Taki M., ${\mathcal W}_3$ irregular states and isolated ${\mathcal N}=2$ superconformal field theories, J. High Energy Phys. 2013 (2013), no. 3, 147, 51 pages, arXiv:1301.0721.
  23. Litvinov A., Lukyanov S., Nekrasov N., Zamolodchikov A., Classical conformal blocks and Painlevé VI, J. High Energy Phys. 2014 (2014), no. 7, 144, 20 pages, arXiv:1309.4700.
  24. Manabe M., Sułkowski P., Quantum curves and conformal field theory, arXiv:1512.05785.
  25. Marshakov A., Mironov A., Morosov A., On AGT relations with surface operator insertion and a stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011), 1203-1222, arXiv:1011.4491.
  26. Marshakov A., Mironov A., Morozov A., On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009), 125-129, arXiv:0909.2052.
  27. Nagoya H., Sun J., Confluent primary fields in the conformal field theory, J. Phys. A: Math. Theor. 43 (2010), 465203, 13 pages, arXiv:1002.2598.
  28. Nekrasov N.A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, hep-th/0206161.
  29. Nekrasov N.A., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  30. Nishinaka T., Rim C., Matrix models for irregular conformal blocks and Argyres-Douglas theories, J. High Energy Phys. 2012 (2012), no. 10, 138, 36 pages, arXiv:1207.4480.
  31. Piatek M., Pietrykowski A.R., Classical irregular blocks, Hill's equation and PT-symmetric periodic complex potentials, J. High Energy Phys. 2016 (2016), no. 7, 131, 24 pages, arXiv:1407.0305.
  32. Polyakov D., Rim C., Irregular vertex operators for irregular conformal blocks, Phys. Rev. D 93 (2016), 106002, 10 pages, arXiv:1601.07756.
  33. Polyakov D., Rim C., Super-spectral curve of irregular conformal blocks, J. High Energy Phys. 2016 (2016), no. 12, 004, 17 pages, arXiv:1604.08741.
  34. Polyakov D., Rim C., Vertex operators for irregular conformal blocks: supersymmetric case, Phys. Rev. D 94 (2016), 086011, 5 pages, arXiv:1604.08741.
  35. Rashkov R.C., Stanishkov M., Three-point correlation functions in $N=1$ super Liouville theory, Phys. Lett. B 380 (1996), 49-58, hep-th/9602148.
  36. Rim C., Zhang H., Classical Virasoro irregular conformal block, J. High Energy Phys. 2015 (2015), no. 7, 163, 19 pages, arXiv:1504.07910.
  37. Rim C., Zhang H., Classical Virasoro irregular conformal block II, J. High Energy Phys. 2015 (2015), no. 9, 097, 14 pages, arXiv:1506.03561.
  38. Wyllard N., $A_{N-1}$ conformal Toda field theory correlation functions from conformal ${\mathcal N}=2$ ${\rm SU}(N)$ quiver gauge theories, J. High Energy Phys. 2009 (2009), no. 11, 002, 22 pages, arXiv:0907.2189.

Previous article  Next article   Contents of Volume 13 (2017)