|
SIGMA 13 (2017), 020, 10 pages arXiv:1612.00927
https://doi.org/10.3842/SIGMA.2017.020
Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials
Satoru Odake and Ryu Sasaki
Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan
Received December 30, 2016, in final form March 23, 2017; Published online March 29, 2017
Abstract
The multi-indexed Laguerre and Jacobi polynomials form a complete set of orthogonal polynomials. They satisfy second-order differential equations but not three term recurrence relations, because of the 'holes' in their degrees. The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions originating from multiple Darboux transformations. For the ease of applications, two different forms of simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived based on various identities. The parity transformation property of the multi-indexed Jacobi polynomials is derived based on that of the Jacobi polynomial.
Key words:
multi-indexed orthogonal polynomials; Laguerre and Jacobi polynomials; Wronskian formula; determinant formula.
pdf (338 kb)
tex (15 kb)
References
-
Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
-
Bagchi B., Quesne C., Roychoudhury R., Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of ${\mathcal{PT}}$ symmetry, Pramana J. Phys. 73 (2009), 337-347, arXiv:0812.1488.
-
Bochner S., Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736.
-
Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127, physics/9908019.
-
Darboux G., Sur une proposition relative aux équations linéaires, Comptes Rendus Acad. Sci. 94 (1882), 1456-1459.
-
Durán A.J., Exceptional Meixner and Laguerre orthogonal polynomials, J. Approx. Theory 184 (2014), 176-208, arXiv:1310.4658.
-
Durán A.J., Exceptional Hahn and Jacobi orthogonal polynomials, J. Approx. Theory 214 (2017), 9-48, arXiv:1510.02579.
-
Durán A.J., Pérez M., Admissibility condition for exceptional Laguerre polynomials, J. Math. Anal. Appl. 424 (2015), 1042-1053, arXiv:1409.4901.
-
Gómez-Ullate D., Kamran N., Milson R., An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl. 359 (2009), 352-367, arXiv:0807.3939.
-
Gómez-Ullate D., Kamran N., Milson R., An extension of Bochner's problem: exceptional invariant subspaces, J. Approx. Theory 162 (2010), 987-1006, arXiv:0805.3376.
-
Gómez-Ullate D., Kamran N., Milson R., Two-step Darboux transformations and exceptional Laguerre polynomials, J. Math. Anal. Appl. 387 (2012), 410-418, arXiv:1103.5724.
-
Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
-
Odake S., New determinant expressions of the multi-indexed orthogonal polynomials in discrete quantum mechanics, arXiv:1702.03078.
-
Odake S., Recurrence relations of the multi-indexed orthogonal polynomials. III, J. Math. Phys. 57 (2016), 023514, 24 pages, arXiv:1509.08213.
-
Odake S., Sasaki R., Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B 679 (2009), 414-417, arXiv:0906.0142.
-
Odake S., Sasaki R., Discrete quantum mechanics, J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages, arXiv:1104.0473.
-
Odake S., Sasaki R., Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials, Phys. Lett. B 702 (2011), 164-170, arXiv:1105.0508.
-
Odake S., Sasaki R., Multi-indexed ($q$-)Racah polynomials, J. Phys. A: Math. Theor. 45 (2012), 385201, 21 pages, arXiv:1203.5868.
-
Odake S., Sasaki R., Multi-indexed Wilson and Askey-Wilson polynomials, J. Phys. A: Math. Theor. 46 (2013), 045204, 22 pages, arXiv:1207.5584.
-
Odake S., Sasaki R., Krein-Adler transformations for shape-invariant potentials and pseudo virtual states, J. Phys. A: Math. Theor. 46 (2013), 245201, 24 pages, arXiv:1212.6595.
-
Odake S., Sasaki R., Multi-indexed Meixner and little $q$-Jacobi (Laguerre) polynomials, J. Phys. A: Math. Theor. 50 (2017), 165204, 23 pages, arXiv:1610.09854.
-
Quesne C., Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 (2008), 392001, 6 pages, arXiv:0807.4087.
-
Routh E.J., On some properties of certain solutions of a differential equation of the second order, Proc. London Math. Soc. S1-16 (1884), 245-261.
-
Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
|
|