|
SIGMA 13 (2017), 022, 13 pages arXiv:1610.09898
https://doi.org/10.3842/SIGMA.2017.022
Contribution to the Special Issue “Gone Fishing”
$G$-Invariant Deformations of Almost-Coupling Poisson Structures
José Antonio Vallejo a and Yury Vorobiev b
a) Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, México
b) Departamento de Matemáticas, Universidad de Sonora, México
Received October 31, 2016, in final form March 28, 2017; Published online April 02, 2017
Abstract
On a foliated manifold equipped with an action of a compact Lie group $G$, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging.
Key words:
Poisson geometry; Dirac structures; deformation; averaging.
pdf (395 kb)
tex (19 kb)
References
-
Arnold V.I., Kozlov V.V., Neishtadt A.I., Dynamical systems. III, Encyclopaedia of Mathematical Sciences, Vol. 3, Springer-Verlag, Berlin, 1988.
-
Avendaño Camacho M., Vallejo J.A., Vorobiev Yu., Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems, J. Math. Phys. 54 (2013), 082704, 15 pages, arXiv:1305.3974.
-
Avendaño Camacho M., Vallejo J.A., Vorobiev Yu., A simple global representation for second-order normal forms of Hamiltonian systems relative to periodic flows, J. Phys. A: Math. Theor. 46 (2013), 395201, 12 pages.
-
Avendaño Camacho M., Vorobiev Yu., On deformations of Poisson structures on fibered manifolds and adiabatic slow-fast systems, Int. J. Geom. Methods Mod. Phys. 14 (2017), 1750086, 15 pages.
-
Brahic O., Fernandes R.L., Poisson fibrations and fibered symplectic groupoids, in Poisson Geometry in Mathematics and Physics, Contemp. Math., Vol. 450, Amer. Math. Soc., Providence, RI, 2008, 41-59, math.DG/0702258.
-
Bursztyn H., Radko O., Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble) 53 (2003), 309-337, math.SG/0202099.
-
Courant T.J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.
-
Courant T.J., Weinstein A., Beyond Poisson structures, in Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, Vol. 27, Hermann, Paris, 1988, 39-49.
-
Crainic M., Fernandes R.L., Stability of symplectic leaves, Invent. Math. 180 (2010), 481-533, arXiv:0810.4437.
-
Crainic M., Mărcuţ I., A normal form theorem around symplectic leaves, J. Differential Geom. 92 (2012), 417-461, arXiv:1009.2090.
-
Frejlich P., Mărcuţ I., The normal form theorem around Poisson transversals, arXiv:1306.6055.
-
Guillemin V., Lerman E., Sternberg S., Symplectic fibrations and multiplicity diagrams, Cambridge University Press, Cambridge, 1996.
-
Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
-
Ševera P., Weinstein A., Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl. (2001), 145-154, math.SG/0107133.
-
Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, Vol. 118, Birkhäuser Verlag, Basel, 1994.
-
Vaisman I., Coupling Poisson and Jacobi structures on foliated manifolds, Int. J. Geom. Methods Mod. Phys. 1 (2004), 607-637, math.SG/0402361.
-
Vaisman I., Foliation-coupling Dirac structures, J. Geom. Phys. 56 (2006), 917-938, math.SG/0412318.
-
Vallejo J.A., Vorobiev Yu., Invariant Poisson realizations and the averaging of Dirac structures, SIGMA 10 (2014), 096, 20 pages, arXiv:1405.0574.
-
Vorobiev Yu., Averaging of Poisson structures, in Geometric Methods in Physics, AIP Conf. Proc., Vol. 1079, Amer. Inst. Phys., Melville, NY, 2008, 235-240.
-
Vorobjev Yu., Coupling tensors and Poisson geometry near a single symplectic leaf, in Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., Vol. 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 249-274, math.SG/0008162.
-
Wade A., Poisson fiber bundles and coupling Dirac structures, Ann. Global Anal. Geom. 33 (2008), 207-217, math.SG/0507594.
|
|