Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 046, 12 pages      arXiv:1703.00046      https://doi.org/10.3842/SIGMA.2017.046

The Malgrange Form and Fredholm Determinants

Marco Bertola ab
a) Department of Mathematics and Statistics, Concordia University, Montréal, Canada
b) Area of Mathematics SISSA/ISAS, Trieste, Italy

Received March 12, 2017, in final form June 17, 2017; Published online June 22, 2017

Abstract
We consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann-Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function $\tau$ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of ''integrable'' type in the sense of Its-Izergin-Korepin-Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.

Key words: Malgrange form; Fredholm determinants; tau function.

pdf (360 kb)   tex (19 kb)

References

  1. Basor E.L., Widom H., On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory 37 (2000), 397-401, math.FA/9909010.
  2. Bertola M., The dependence on the monodromy data of the isomonodromic tau function, Comm. Math. Phys. 294 (2010), 539-579, arXiv:0902.4716.
  3. Bertola M., Corrigendum: The dependence on the monodromy data of the isomonodromic tau function, arXiv:1601.04790.
  4. Bertola M., Cafasso M., The transition between the gap probabilities from the Pearcey to the Airy process - a Riemann-Hilbert approach, Int. Math. Res. Not. 2012 (2012), 1519-1568, arXiv:1005.4083.
  5. Borodin A., Okounkov A., A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37 (2000), 386-396, math.CA/9907165.
  6. Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York - London - Paris, 1978.
  7. Clancey K.F., Gohberg I., Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, Vol. 3, Birkhäuser Verlag, Basel - Boston, Mass., 1981.
  8. Gantmacher F.R., The theory of matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959.
  9. Gavrylenko P., Lisovyy O., Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, arXiv:1608.00958.
  10. Harnad J., Its A.R., Integrable Fredholm operators and dual isomonodromic deformations, Comm. Math. Phys. 226 (2002), 497-530, solv-int/9706002.
  11. Its A., Lisovyy O., Prokhorov A., Monodromy dependence and connection formulae for isomonodromic tau functions, arXiv:1604.03082.
  12. Its A., Lisovyy O., Tykhyy Yu., Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks, Int. Math. Res. Not. 2015 (2015), 8903-8924, arXiv:1403.1235.
  13. Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A., Differential equations for quantum correlation functions, Internat. J. Modern Phys. B 4 (1990), 1003-1037.
  14. Malgrange B., Sur les déformations isomonodromiques. I. Singularités régulières, in Mathematics and Physics (Paris, 1979/1982), Progr. Math., Vol. 37, Birkhäuser Boston, Boston, MA, 1983, 401-426.
  15. Malgrange B., Déformations isomonodromiques, forme de Liouville, fonction $\tau$, Ann. Inst. Fourier (Grenoble) 54 (2004), 1371-1392.

Previous article  Next article   Contents of Volume 13 (2017)