|
SIGMA 13 (2017), 046, 12 pages arXiv:1703.00046
https://doi.org/10.3842/SIGMA.2017.046
The Malgrange Form and Fredholm Determinants
Marco Bertola ab
a) Department of Mathematics and Statistics, Concordia University, Montréal, Canada
b) Area of Mathematics SISSA/ISAS, Trieste, Italy
Received March 12, 2017, in final form June 17, 2017; Published online June 22, 2017
Abstract
We consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann-Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function $\tau$ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of ''integrable'' type in the sense of Its-Izergin-Korepin-Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.
Key words:
Malgrange form; Fredholm determinants; tau function.
pdf (360 kb)
tex (19 kb)
References
-
Basor E.L., Widom H., On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory 37 (2000), 397-401, math.FA/9909010.
-
Bertola M., The dependence on the monodromy data of the isomonodromic tau function, Comm. Math. Phys. 294 (2010), 539-579, arXiv:0902.4716.
-
Bertola M., Corrigendum: The dependence on the monodromy data of the isomonodromic tau function, arXiv:1601.04790.
-
Bertola M., Cafasso M., The transition between the gap probabilities from the Pearcey to the Airy process - a Riemann-Hilbert approach, Int. Math. Res. Not. 2012 (2012), 1519-1568, arXiv:1005.4083.
-
Borodin A., Okounkov A., A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37 (2000), 386-396, math.CA/9907165.
-
Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York - London - Paris, 1978.
-
Clancey K.F., Gohberg I., Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, Vol. 3, Birkhäuser Verlag, Basel - Boston, Mass., 1981.
-
Gantmacher F.R., The theory of matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959.
-
Gavrylenko P., Lisovyy O., Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, arXiv:1608.00958.
-
Harnad J., Its A.R., Integrable Fredholm operators and dual isomonodromic deformations, Comm. Math. Phys. 226 (2002), 497-530, solv-int/9706002.
-
Its A., Lisovyy O., Prokhorov A., Monodromy dependence and connection formulae for isomonodromic tau functions, arXiv:1604.03082.
-
Its A., Lisovyy O., Tykhyy Yu., Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks, Int. Math. Res. Not. 2015 (2015), 8903-8924, arXiv:1403.1235.
-
Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A., Differential equations for quantum correlation functions, Internat. J. Modern Phys. B 4 (1990), 1003-1037.
-
Malgrange B., Sur les déformations isomonodromiques. I. Singularités régulières, in Mathematics and Physics (Paris, 1979/1982), Progr. Math., Vol. 37, Birkhäuser Boston, Boston, MA, 1983, 401-426.
-
Malgrange B., Déformations isomonodromiques, forme de Liouville, fonction $\tau$, Ann. Inst. Fourier (Grenoble) 54 (2004), 1371-1392.
|
|